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4 - Estimation and prediction

• Indicator functions

• The Markov inequality

• The Chebyshev inequality

• Confidence intervals

• Standard deviation

• Selecting an estimate

• Minimum probability of error

• Mean square error

• The MMSE predictor

• Cost matrices

• Minimum cost estimates
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Indicator functions

Suppose A ⊂ Ω is an event. Define the indicator function 1A : Ω → R by

1A(ω) =

{

1 if ω ∈ A

0 otherwise

The important property is

E 1A = Prob(A)

Because

E 1A =
∑

ω∈Ω

1A(ω)p(ω)

=
∑

ω∈A

p(ω)
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The Markov inequality

Suppose

• x : Ω → R is real-valued random variable

• x is nonnegative, i.e., x(ω) ≥ 0 for all ω ∈ Ω

The Markov inequality bounds the probability that x is large

Prob(x ≥ a) ≤
1

a
E x
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Example: the Markov inequality

Look at the following pmf
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The Markov inequality

Prob(x ≥ a) ≤
1

a
E x

• Recall the mean is the center of mass of x.

Since x is nonnegative, the mean gives a bound on the probability that x takes large
values.

• The Markov inequality is a prediction of the outcome.

• To use it, we need

• to know x is nonnegative

• to know the mean E x

• We don’t need to know the pmf!
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Proof of the Markov inequality

First, a useful fact: if y and z are random variables, and

y(ω) ≤ z(ω) for all ω ∈ Ω

Then E y ≤ E z

Because

E y =
∑

ω∈Ω

y(ω)p(ω)

≤
∑

ω∈Ω

z(ω)p(ω)

= E z



q

q = x/a

q = f(x)

x
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Proof of the Markov inequality

Define the function f : R → R by

f (x) =

{

1 if x ≥ a

0 otherwise

Let y be the random variable y = f (x). Then E y = Prob(x ≥ a)

Let z be the random variable z = x/a. Then E z =
1

a
E x

Then y(x(ω)) ≤ z(x(ω)) for all ω ∈ Ω and so

E y ≤ E z

hence Prob(x ≥ a) ≤
1

a
E x



4 - 8 Estimation and prediction S. Lall, Stanford 2011.01.11.01

The Markov inequality

An example where the bound is tight at a point
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The Chebyshev inequality

Suppose x : Ω → R. The Chebyshev inequality is

Prob
(

|x − E x| ≥ a
)

≤
1

a2
cov(x)

• Variance cov(x) gives a bound on the probability that x is far from the mean E x.

• Again, we do not need to know the pmf.

• For any pmf with finite variance, as a becomes large

the probability that |x − E x| ≥ a decreases faster than 1/a2
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The Chebyshev inequality

The proof is similar to that for the Markov inequality. Let µ = E x, and define

f (x) =

{

1 if |x − µ| ≥ a

0 otherwise

and let y = f (x) so that E y = Prob(|x − µ| ≥ a).

Also let z = (x − µ)2/a2 so that E z = cov(x)/a2

Then y
(

x(ω)
)

≤ z
(

x(ω)
)

for all ω ∈ Ω, hence E y ≤ E z.

e.g., when a = 1 and µ = 0
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Confidence intervals

The Chebyshev bound also can be written as

Prob

(

x ∈ [E x − a,E x + a]
)

≥ 1 −
cov(x)

a2

• The interval [E x − a,E x + a] is called a confidence interval.

• a is called the half-width

• 1 − cov(x)/a2 is called the confidence level
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Confidence intervals and standard deviation

Denote the standard deviation of x by σ = std(x). Then

Prob

(

x ∈ [E x − a,E x + a]
)

≥ 1 −
(

σ/a
)2

Some examples:

• Pick a = 3σ; then the probability that x lies within 3σ of the mean is at least 0.88

• Choosing a = 6σ gives probability 0.97

Note: we need to know only σ, nothing else about the pdf of x! (but the bound may be
loose)
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Confidence Intervals

There is a trade-off between the width of the confidence interval and the confidence level
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Selecting an estimate

Suppose x : Ω → R is a random variable, with induced pmf px : R → [0, 1].

The induced pmf px may be

• The frequencies of letter usage in a book, rock sample types, etc.

• How often an aircraft passes within range of a radar system i.e., Ω = {0, 1}

• Discretized force exerted by wind disturbances on a vehicle; (usually Ω = R
n)

We want to predict the outcome of the experiment; which xest ∈ R should we pick?
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Selecting an estimate

Some possible choices

• We could pick the mean. A disadvantage is that the sample space Ω is a finite set,
so the mean may not equal x(ω) for any ω ∈ Ω; then the prediction is always wrong.

• One choice is to minimize the probability of error. We have

probability of error = Prob(x 6= xest)

=
∑

a6=xest

px(a)

= 1 − px(xest)

So to minimize the error probability, pick xest to maximize px(xest).
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Problems with selecting an estimate

What’s wrong with minimizing the probability of error?

• One problem is possible nonuniqueness: which peak do we want?
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Usually we can handle this

• Other problems occur also. . .
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Problems with selecting an estimate

• If x : Ω → R, then there may be a natural choice of error

e.g., for a radar, observing 2 aircraft is very different from observing 10 aircraft.

• conversely, there may be no metric;

e.g., for character recognition, x : Ω → {a, b, c, . . . , z}

mistaking a for b is not better than mistaking a for q

If there is a metric, the minimum error estimate might be far from other good choices
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Problems with selecting an estimate

Suppose Ω = R and x : Ω → R is a continuous random variable.

• The probability of error is always 1; i.e., the prediction is always wrong.

• There is no estimate that gives minimum error probability

• Here we can pick the mean, but why?

In order to select the best estimate, we need a cost function.
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The mean square error

The mean square error is

mse(xest) = E

(

(x − xest)
2

)

• A very common choice for error

• We’ll use it many times in this course
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The minimum mean square error (MMSE) predictor

The estimate that minimizes the MSE is the mean.

xopt = E x

Because

E
(

(x − a)2
)

= E
(

x2 − 2ax + a2
)

= E
(

x2
)

− 2aE x + a2

Then differentiating with respect to a gives

−2E x + 2a = 0

and hence
aopt = E x
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The minimum mean square error (MMSE) predictor

An alternate proof is given by the mean-variance decomposition, which says

E(x2) = (E x)2 + E
(

(x − E x)2
)

Apply this to the error random variable z

z = x − xest

Then we have

mse(xest) = E(z2)

= (E z)2 + E
(

(z − E z)2
)

= (E z)2 + E
(

(x − xest − (Ex − xest))
2
)

= (E z)2 + E
(

(x − E x)2
)

= (E z)2 + cov(x)
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The minimum mean square error (MMSE) predictor

So we have

mse(xest) = (E(x) − xest)
2 + cov(x)

• The first term is the square of the mean error

E z = E(x) − xest

The mean error E z is called the bias of the estimate xest.

The best we can do is to make this zero.

• The second term is the covariance of x; it is the error we cannot remove
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Cost matrices

Suppose x : Ω → V , and V = {v1, v2, . . . , vn}.

• Exactly one outcome ω ∈ Ω occurs

• Hence exactly one element of V occurs

• We’d like to predict which one.

We’ll specify the cost by a cost matrix C ∈ R
n×n

Cij = cost of estimating vi when outcome is vj

Notice that

• for every estimate vj and every outcome vi, there may be a different cost.
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Example: cost matrices

If n = 4, i.e., there are four possible outcomes, then one choice for C is

C =









0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0









• Here we pick Cii = 0 so that correct estimates have no cost.

• Cij = 1 when i 6= j so that all incorrect estimates incur the same cost
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Example: cost matrices

Another choice for C is

C =









0 1 2 3
1 0 1 2
2 1 0 1
3 2 1 0









• Here the cost depends on Cij = |i − j|

• If V ⊂ R, we often assign costs of the form Cij = f (i − j),

i.e., Cij is a function only of i − j.

• So the matrix C is Toeplitz
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Coding for minimum cost estimates

To represent the estimate xest ∈ V , we’ll use an indicator vector k ∈ R
n

ki =

{

1 if i = iest
0 otherwise

Here iest is the index of the estimate.

Also let px ∈ R
n be the induced pmf of x.
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Minimum cost estimates

Suppose the estimator is defined by the indicator vector k.

• Then CTk is a random variable, which assigns costs to outcomes.

• Since k is an indicator vector, CTk is given by the the iest’th row of C.

The expected cost is therefore

ECTk = kTCpx

We can then pick the optimal estimator; the one that minimizes the cost, by setting iest
to the index of the smallest element of Cpx
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Minimum cost estimates and minimum probability of error

Minimizing the probability of error is equivalent to choosing cost matrix

C =













0 1 . . . 1

1 0 ... .
.
..

.

.
... ...

0 1
1 . . . 1 0













= 11
T − I

Then
Cpx = (11

T − I)px = 1 − px

and iest selects the smallest element of 1 − px, i.e., it selects the largest element of px

The cost matrix C = 11
T − I is called the Bayes risk
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Example: minimum cost estimates

We’ll consider the distribution

0 5 10 15 20 25 30 35 40
0

0.02

0.04

0.06

0.08

0.1

px(xi)

i

and three cost matrices

Cmin-error = 11
T − I Cabs

ij = |i − j| Csquared
ij = (i − j)2

The corresponding estimates are

imin-error = 40 iabs = 13 isquared = 15 Ex ≈ 14.85


