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Indicator functions

Suppose A C €2 is an event. Define the indicator function 14 : {2 — R by

L) = {1 fwe A

0 otherwise

The important property is

E 1A — PI‘Ob(A)

Because

Ely= Z La(w)p(w)

weld

= pw)

weA
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The Markov inequality
Suppose

o 1 :¢) — R is real-valued random variable

e I is nonnegative, i.e., z(w) > 0 for all w €

The Markov inequality bounds the probability that x is large

|
Prob(z > a) < -Eux
a
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Example: the Markov inequality

Look at the following pmf
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The Markov inequality gives an upper bound on Prob(x > a) using the mean
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The Markov inequality

|
Prob(z > a) < -Ex
a

e Recall the mean is the center of mass of x.

Since x is nonnegative, the mean gives a bound on the probability that x takes large
values.

e The Markov inequality is a prediction of the outcome.

e To use it, we need

e to know x is nonnegative

e to know the mean E x

e We don't need to know the pmf!
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Proof of the Markov inequality
First, a useful fact: if y and 2z are random variables, and
y(w) < z(w)  forallw e

Then Ey < Ez

Because
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Proof of the Markov inequality
Define the function f : R — R by

f(:z:){l if x> a

0 otherwise

Let y be the random variable y = f(x). Then Ey = Prob(z > a)

1
Let z be the random variable z = x/a. Then Ez = -Ex
a
Then y(x(w)) < z(xz(w)) for all w € Q and so q=wja
q
Ey<E:z
1 q = [f(x)
hence Prob(x > a) < —Eux
a >
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The Markov inequality

An example where the bound is tight at a point
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The Markov inequality gives an upper bound on Prob(z > a)
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The Chebyshev inequality
Suppose z : {2 — R. The Chebyshev inequality is

1
Prob(lz —Ez| > a) < ?cov(az)

e Variance cov(x) gives a bound on the probability that x is far from the mean E z.

e Again, we do not need to know the pmf.

e For any pmf with finite variance, as a becomes large

the probability that |z — E 2| > a decreases faster than 1/a*
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The Chebyshev inequality
The proof is similar to that for the Markov inequality. Let ;4 = E 2, and define

f(a:){l if |x —pu| >a

0 otherwise
and let y = f(x) so that Ey = Prob(|z — u| > a).

Also let z = (z — pu)?/a® so that E 2z = cov(z)/a’

Then y(z(w)) < z(z(w)) for all w € 2, hence Ey < E z.

e.g., whena=1and =0

2
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Confidence intervals
The Chebyshev bound also can be written as

cov(x)

Prob(xE[E:c—a,E:c+a]) >1——
a

e The interval [Ex — a, Ex + a] is called a confidence interval.
e a is called the half-width

e 1 —cov(z)/a*is called the confidence level
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Confidence intervals and standard deviation

Denote the standard deviation of x by 0 = std(x). Then

Prob(az c | Ex— a,Eaj—HL]) > 1 — (a/a)2

Some examples:

e Pick a = 30; then the probability that = lies within 30 of the mean is at least (.88

e Choosing a = 6o gives probability 0.97

Note: we need to know only o, nothing else about the pdf of z! (but the bound may be
loose)
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Confidence Intervals

There is a trade-off between the width of the confidence interval and the confidence level
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Selecting an estimate

Suppose z : 2 — R is a random variable, with induced pmf p* : R — [0, 1].

The induced pmf p* may be
e The frequencies of letter usage in a book, rock sample types, etc.
e How often an aircraft passes within range of a radar system i.e., 2 = {0, 1}

e Discretized force exerted by wind disturbances on a vehicle; (usually 2 = R")

We want to predict the outcome of the experiment; which x.: € R should we pick?
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Selecting an estimate

Some possible choices

e We could pick the mean. A disadvantage is that the sample space () is a finite set,
so the mean may not equal z(w) for any w € €2; then the prediction is always wrong.

e One choice is to minimize the probability of error. We have

probability of error = Prob(z # Zes)

= > p'la)

a7 Test
=1 px(ajest)

So to minimize the error probability, pick Zest to maximize p*(Zegt).
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Problems with selecting an estimate

What's wrong with minimizing the probability of error?

e One problem is possible nonuniqueness: which peak do we want?

0.14
042 o
o1f SEED (1 EETRATRRE ® |
pila) O08F olle
0.06f 3 X U B EEERRERREE 119
0.04f IEEEE
0.02 o~

15 20

Usually we can handle this

e Other problems occur also. . .
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Problems with selecting an estimate

e If x:{) — R, then there may be a natural choice of error
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e.g., for a radar, observing 2 aircraft is very different from observing 10 aircraft.

e conversely, there may be no metric;

e.g., for character recognition, = : Q) — {a,b,c,..., 2z}

mistaking a for b is not better than mistaking a for ¢

If there is a metric, the minimum error estimate might be far from other good choices
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Problems with selecting an estimate

Suppose €2 =R and x : {2 — R is a continuous random variable.

e The probability of error is always 1; i.e., the prediction is always wrong.
e Thereis no estimate that gives minimum error probability

e Here we can pick the mean, but why?

In order to select the best estimate, we need a cost function.
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The mean square error

The mean square error is

mse(Teg) = E(@: _ xest)Q)

e A very common choice for error

e We'll use it many times in this course
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The minimum mean square error (MMSE) predictor

The estimate that minimizes the MSE is the mean.

Because
E((z — a)’) = E(2° — 2ax + a”)

— E(.CEQ) —2aEzx +d?

Then differentiating with respect to a gives
—2Ex+2a=0

and hence
aopt = E @
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The minimum mean square error (MMSE) predictor

An alternate proof is given by the mean-variance decomposition, which says

E(z%) = (Ex)* + E((a: — E:C)2)

Apply this to the error random variable z
2 =X — Test
Then we have
mse(Test) = E(2%)
= (E2)’+E((z —Ez2)?)
= (E2+E((z — 2est — (B — Zest))’)
= (Ez2)’+E((x — Ex)?)

= (E2)*+ cov(z)
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The minimum mean square error (MMSE) predictor

So we have

mse(Zest) = (E(2) — Zest)* + cov(z)

e The first term is the square of the mean error

The mean error E z is called the bias of the estimate ..

The best we can do is to make this zero.

e The second term is the covariance of x: it is the error we cannot remove
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Cost matrices
Suppose x : 2 — V, and V = {vy, v9,...,0,}.

e Exactly one outcome w € €} occurs

e Hence exactly one element of V' occurs

e We'd like to predict which one.

We'll specify the cost by a cost matrix C' € R"*"

(;; = cost of estimating v; when outcome is v,

Notice that

o for every estimate v; and every outcome v;, there may be a different cost.
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Example: cost matrices

If n =4, i.e., there are four possible outcomes, then one choice for C' is

—_ = = O
_ = O

_ O = =
O —_) = =

e Here we pick C;; = 0 so that correct estimates have no cost.

o (;j=1whent = 4 so that all incorrect estimates incur the same cost
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Example: cost matrices

Another choice for C is

W N — O
O — O =
—_ O =N
O = oW

e Here the cost depends on Cj; = |i — j

o If V C R, we often assign costs of the form C;; = f(i — j),

i.e., Cj; is a function only of 7 — 7.

e So the matrix C'is Toeplitz
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Coding for minimum cost estimates

To represent the estimate xot € V', we'll use an indicator vector k € R"

1 |f Z — iest

0 otherwise

Here 7. is the index of the estimate.

Also let p* € R" be the induced pmf of x.
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Minimum cost estimates

Suppose the estimator is defined by the indicator vector k.
e Then CTL is a random variable, which assigns costs to outcomes.

e Since k is an indicator vector, C'k is given by the the i.'th row of C.

The expected cost is therefore

ECTk =K' Cp*

We can then pick the optimal estimator; the one that minimizes the cost, by setting Zes:
to the index of the smallest element of C'p*
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Minimum cost estimates and minimum probability of error

Minimizing the probability of error is equivalent to choosing cost matrix

01 ... 1
I 0 -. :
C=1|. . . |=111-1I
' 01
1. 10

Then
Cp* = (1" = I)p* =1 —p*

and 7. selects the smallest element of 1 — p*, i.e., it selects the largest element of p*

The cost matrix C' = 117 — I is called the Bayes risk
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Example: minimum cost estimates

We'll consider the distribution
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and three cost matrices

Cmin—error _ 11T _ 7

The corresponding estimates are

Umin-error — 40

labs = 13

cr = |i - j|

Z.sq uared — 15
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C;;]uared _ (Z L ])2

Ex ~ 14.85



