11 - The linear model

- The linear model
- The joint pdf and covariance
- Example: uniform pdfs
- The importance of the prior
- Linear measurements with Gaussian noise
- Example: Gaussian noise
- The signal-to-noise ratio
- Scalar systems and the SNR
- Example: small and large noise
- Posterior covariance
- Example: navigation
- Alternative formulae
- Weighted least squares

The linear model

A very important class of estimation problems is the *linear model*

y = Ax + w

- x and w are independent
- We have induced pdfs p^x for x and p^w for w
- The matrix A is $m \times n$

We measure $y = y_{meas}$ and would like to estimate x

The mean

• Let
$$\mu_x = \mathbf{E} x$$
 and $\mu_w = \mathbf{E} w$

• Then

$$\mathbf{E}\,y = A\mu_x + \mu_w$$

• Call this μ_y

The linear map

Since y = Ax + w, we have

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} I & 0 \\ A & I \end{bmatrix} \begin{bmatrix} x \\ w \end{bmatrix}$$

- We will measure $y = y_{\text{meas}}$ and estimate x
- To do this, we would like the *conditional pdf* of $x \mid y = y_{\text{meas}}$
- For this, we need the joint pdf of \boldsymbol{x} and \boldsymbol{y}

The joint pdf

The joint pdf p of x and y is

$$p(x,y) = p^{x}(x)p^{w}(y - Ax)$$

because the joint pdf of $\boldsymbol{x}, \boldsymbol{w}$ is

$$p_1\left(\begin{bmatrix}x\\w\end{bmatrix}\right) = p^x(x)p^w(w)$$

and we know

$\begin{bmatrix} x \end{bmatrix}$	=	$\left[I \right]$	0	$\begin{bmatrix} x \end{bmatrix}$
$\lfloor y \rfloor$		A	I	$\lfloor w \rfloor$

$$z = Hu \text{ implies } p^{z}(a) = |\det H|^{-1} p^{u}(H^{-1}(u)), \text{ so}$$
$$p(x, y) = p_{1} \left(\begin{bmatrix} I & 0 \\ -A & I \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \right)$$

The covariance

Let $\Sigma_w = \mathbf{cov}(w)$ and $\Sigma_x = \mathbf{cov}(x)$. We have

$$\mathbf{cov} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \Sigma_x & \Sigma_x A^T \\ A\Sigma_x & A\Sigma_x A^T + \Sigma_w \end{bmatrix}$$

• Call this
$$\begin{bmatrix} \Sigma_x & \Sigma_{xy} \\ \Sigma_{yx} & \Sigma_y \end{bmatrix}$$
. Above holds because $\mathbf{cov} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} I & 0 \\ A & I \end{bmatrix} \begin{bmatrix} \Sigma_x & 0 \\ 0 & \Sigma_w \end{bmatrix} \begin{bmatrix} I & 0 \\ A & I \end{bmatrix}^T$

- Then $\mathbf{cov}(y) = A\Sigma_x A^T + \Sigma_w$
- $A\Sigma_x A^T$ is 'signal covariance'
- Σ_w is 'noise covariance'

Example: uniform pdfs

Suppose $x \sim \mathcal{U}[-2,2]$ and $w \sim \mathcal{U}[-1,1]$ and we measure y = x + w.

The joint pdf and MMSE estimator are

Notice the estimator is not $x_{est} = y_{meas}$, because of the prior information that $x \in [-2, 2]$.

The importance of the prior

- $x \sim \mathcal{U}[-2,2]$ as before
- $w \sim \mathcal{U}[-0.3, 0.3]$; signal x is large relative to the noise w

The joint pdf and MMSE estimator are

The estimator is *almost* $x_{est} = y_{meas}$

The importance of the prior

- $x \sim \mathcal{U}[-2,2]$ as before
- $w \sim \mathcal{U}[-10, 10]$; signal x is small relative to the noise w

- The joint pdf and MMSE estimator are shown.
- The estimator mostly ignores the measurement
- The estimate is *almost* the *prior mean* $\mathbf{E} x = 0$

Linear measurements with Gaussian noise

We have the *linear model*

$$y = Ax + w$$

•
$$x \sim \mathcal{N}(0, \Sigma_x)$$
 and $w \sim \mathcal{N}(0, \Sigma_w)$ are independent

• So
$$\begin{bmatrix} x \\ y \end{bmatrix}$$
 is Gaussian, with mean and covariance
 $\mathbf{E} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad \mathbf{cov} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \Sigma_x & \Sigma_x A^T \\ A\Sigma_x & A\Sigma_x A^T + \Sigma_w \end{bmatrix}$

11 - 11 The linear model

Linear measurements with Gaussian noise

The MMSE estimate of x given $y = y_{\text{meas}}$ is

$$\hat{x}_{\mathsf{mmse}} = \Sigma_x A^T (A \Sigma_x A^T + \Sigma_w)^{-1} y_{\mathsf{meas}}$$

because we know $\hat{x}_{mmse} = \sum_{xy} \sum_{y}^{-1} y_{meas}$

The matrix $L = \Sigma_x A^T (A \Sigma_x A^T + \Sigma_w)^{-1}$ is called the *estimator gain*

Example: linear measurements with Gaussian noise

Suppose y = 2x + w, with

- prior covariance $\mathbf{cov}(x) = 1$
- noise covariance $\mathbf{cov}(w) = 3$

the estimator is

$$x_{\rm mmse} = \frac{2y_{\rm meas}}{7}$$

The MMSE estimator gives a smaller answer than just inverting A,

$$|x_{\mathsf{mmse}}| \le |A^{-1}y_{\mathsf{meas}}|$$

since we have prior information about \boldsymbol{x}

Non-zero means

Suppose $x \sim \mathcal{N}(\mu_x, \Sigma_x)$ and $w \sim \mathcal{N}(\mu_w, \Sigma_w)$.

The MMSE estimate of x given $y = y_{\text{meas}}$ is

$$\hat{x}_{\text{mmse}} = \mu_x + \Sigma_x A^T (A \Sigma_x A^T + \Sigma_w)^{-1} (y_{\text{meas}} - A \mu_x - \mu_w)$$

The signal to noise ratio

Suppose where x, y and w are scalar, and y = Ax + w. The *signal-to-noise ratio* is

$$s = \frac{\sqrt{A^2 \Sigma_x}}{\sqrt{\Sigma_w}}$$

• Commonly used for scalar w, x, y; no use in vector case

• In terms of *s*, the MMSE estimate is

$$x_{\rm mmse} = \mu_x + \frac{A\Sigma_x}{A^2\Sigma_x + \Sigma_w} (y_{\rm meas} - A\mu_x)$$

$$= \frac{1}{1+s^2}\mu_x + \frac{s^2}{1+s^2}A^{-1}y_{\text{meas}}$$

Scalar systems and the SNR

The MMSE estimate is

$$x_{\rm mmse} = \frac{1}{1+s^2}\mu_x + \frac{s^2}{1+s^2}A^{-1}y_{\rm meas}$$

• let
$$\theta = \frac{1}{1+s^2}$$
, then $x_{\text{mmse}} = \theta \mu_x + (1-\theta)A^{-1}y$

a *convex linear combination* of the prior mean and the least-squares estimate

• when
$$s$$
 is small, $x_{\mathsf{mmse}} pprox \mu_x$, the *prior mean*

• when s is large, $x_{mmse} \approx A^{-1}y$, the *least-squares estimate* of y

Example: small noise

Suppose y = 2x + w, with

- prior covariance $\mathbf{cov}(x) = 1$
- noise covariance $\mathbf{cov}(w) = 0.4$; signal is large compared to noise

Hence

• SNR
$$s = \frac{\sqrt{A^2 \Sigma_x}}{\sqrt{\Sigma_w}} \approx 3.2$$

• Estimate is

$$x_{\rm mmse} = \frac{s^2}{1+s^2} A^{-1} y_{\rm meas}$$
$$\approx 0.9 A^{-1} y_{\rm meas}$$

i.e., close to
$$y_{\rm meas}/2$$

Example: large noise

Suppose y = 2x + w, with

- prior covariance $\mathbf{cov}(x) = 1$
- noise covariance $\mathbf{cov}(w) = 20$; signal is small compared to noise

Hence

• SNR
$$s = \frac{\sqrt{A^2 \Sigma_x}}{\sqrt{\Sigma_w}} \approx 0.45$$

• Estimate is

$$x_{\rm mmse} = \frac{s^2}{1+s^2} A^{-1} y_{\rm meas}$$
$$\approx 0.17 A^{-1} y_{\rm meas}$$

i.e., closer to 0 for all $y_{\rm meas}$

The posterior covariance

The posterior covariance of x given $y = y_{\text{meas}}$ is

$$\mathbf{cov}(x \mid y = y_{\text{meas}}) = \Sigma_x - \Sigma_x A^T (A \Sigma_x A^T + \Sigma_w)^{-1} A \Sigma_x$$

• above follows because

$$\operatorname{cov}(x \mid y = y_{\text{meas}}) = \Sigma_x - \Sigma_{xy} \Sigma_y^{-1} \Sigma_{yx}$$

• We can use this to compute the MSE since

$$\mathbf{E}(\|x - \hat{x}_{\mathsf{mmse}}\|^2 \,|\, y = y_{\mathsf{meas}}) = \mathbf{trace}\,\mathbf{cov}(x \,|\, y = y_{\mathsf{meas}})$$

The posterior covariance and SNR

For scalar problems, the posterior covariance of x given $y = y_{\text{meas}}$ is

$$\mathbf{cov}(x \mid y = y_{\text{meas}}) = \frac{\Sigma_x}{1 + s^2}$$

Example: navigation

 $x = \begin{bmatrix} p \\ q \end{bmatrix}$ our location, we measure distances r_i to m beacons at points (u_i, v_i)

assume p, q are small compared to u_i, v_i . then, approximately

$$y = Ax$$

• $A \in \mathbb{R}^{m \times 2}$, *i*th row of A is the transpose of unit vector in the direction of beacon *i*

•
$$y = \begin{bmatrix} \sqrt{u_1^2 + v_1^2} - r_1 \\ \vdots \\ \sqrt{u_m^2 + v_m^2} - r_m \end{bmatrix}$$
 measured vector of distances

Example: navigation

here $A \in \mathbb{R}^{3 \times 2}$ with

$$A = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

and y = Ax. Each b_i is a unit vector.

• Prior information is
$$x \sim \mathcal{N}\left(\begin{bmatrix}4\\4\end{bmatrix}, \begin{bmatrix}2 & 0\\0 & 2\end{bmatrix}\right)$$

• y is measured; y_i is range measurement in the direction b_i with noise w added

• beacons at
$$\begin{bmatrix} 50\\0 \end{bmatrix}$$
, $\begin{bmatrix} 20\\50 \end{bmatrix}$, $\begin{bmatrix} -50\\-50 \end{bmatrix}$

• figure shows prior 90% confidence ellipsoid

11 - 22 The linear model

Example: posterior confidence ellipsoids

Posterior confidence ellipsoids for two different possible noise covariances.

Alternative formula

There is another way to write the posterior covariance:

$$\mathbf{cov}(x \mid y = y_{\text{meas}}) = \left(\Sigma_x^{-1} + A^T \Sigma_w^{-1} A\right)^{-1}$$

• follows from the *Sherman-Morrison-Woodbury* formula

$$(A - BD^{-1}C)^{-1} = A^{-1} + A^{-1}B(D - CA^{-1}B)^{-1}CA^{-1}$$

• This is very useful when we have fewer unknowns than measurements; i.e., Σ_x is smaller that $A\Sigma_x A^T$

Alternative formula

There is also an alternative formula for the estimator gain

$$L = (\Sigma_x^{-1} + A^T \Sigma_w^{-1} A)^{-1} A^T \Sigma_w^{-1}$$

• Because

$$\begin{split} L &= \Sigma_x A^T (A \Sigma_x A^T + \Sigma_w)^{-1} \\ &= \Sigma_x A^T (\Sigma_w^{-1} A \Sigma_x A^T + I)^{-1} \Sigma_w^{-1} \\ &= (\Sigma_x A^T \Sigma_w^{-1} A + I)^{-1} \Sigma_x A^T \Sigma_w^{-1} \qquad \text{by push-through identity} \\ &= (A^T \Sigma_w^{-1} A + \Sigma_x^{-1})^{-1} A^T \Sigma_w^{-1} \end{split}$$

Comparison with least-squares

The least-squares approach minimizes

$$||y - Ax||^2 = \sum_{i=1}^{m} (y_i - a_i^T x)^2$$

where
$$A = \begin{bmatrix} a_1 & a_2 & \dots & a_m \end{bmatrix}^T$$

Suppose instead we minimize

$$\sum_{i=1}^m w_i (y_i - a_i^T x)^2$$

where w_1, w_2, \ldots, w_m are positive *weights*

Weighted norms

More generally, let's look at *weighted norms*

contours of the 2-norm

$$\|x\|_2 = \sqrt{x^T x}$$

contours of the *weighted-norm*

$$\|x\|_W = \sqrt{x^T W x}$$
$$= \|W^{\frac{1}{2}} x\|_2$$
where $W = \begin{bmatrix} 2 & 1\\ 1 & 4 \end{bmatrix}$

3

Weighted least squares

the *weighted least-squares* problem; given $y_{\text{meas}} \in \mathbb{R}^m$,

minimize	$\ y_{meas} - Ax\ _W$
----------	-----------------------

assume $A \in \mathbb{R}^{m \times n}$, skinny, full rank, and $W \in \mathbb{R}^{m \times m}$ and W > 0

then (by differentiating) the optimum x is

$$x_{\rm wls} = (A^T W A)^{-1} A^T W y_{\rm meas}$$

Weighted least squares

- if there is no noise, y lies in $\mathbf{range} A$
- the weighted least-squares estimate x_{wls} minimizes

$$\|y_{\mathsf{meas}} - Ax\|_W$$

• Ax_{wls} is the closest (in weighted-norm) point in range A to y_{meas}

MMSE and weighted least squares

suppose we choose weight $W = \Sigma_w^{-1}$; then WLS solution is

 $x_{\rm wls} = (A^T \Sigma_w^{-1} A)^{-1} A^T \Sigma_w^{-1} y_{\rm meas}$

compare with MMSE estimate when $x \sim \mathcal{N}(0, \Sigma_x)$ and $w \sim \mathcal{N}(0, \Sigma_w)$

$$x_{\text{mmse}} = (\Sigma_x^{-1} + A^T \Sigma_w^{-1} A)^{-1} A^T \Sigma_w^{-1} y_{\text{mease}}$$

• as the prior covariance $\Sigma_x \to \infty$, the MMSE estimate tends to the WLS estimate

- if $\Sigma_w = I$ then MMSE tends to usual least-squares solution as $\Sigma_x \to \infty$
- the weighted norm heavily penalizes the residual y Ax in low-noise directions