11 - The linear model

- The linear model
- The joint pdf and covariance
- Example: uniform pdfs
- The importance of the prior
- Linear measurements with Gaussian noise
- Example: Gaussian noise
- The signal-to-noise ratio
- Scalar systems and the SNR
- Example: small and large noise
- Posterior covariance
- Example: navigation
- Alternative formulae
- Weighted least squares

The linear model

A very important class of estimation problems is the linear model

$$
y=A x+w
$$

- x and w are independent
- We have induced pdfs p^{x} for x and p^{w} for w
- The matrix A is $m \times n$

We measure $y=y_{\text {meas }}$ and would like to estimate x

The mean

- Let $\mu_{x}=\mathbf{E} x$ and $\mu_{w}=\mathbf{E} w$
- Then

$$
\mathbf{E} y=A \mu_{x}+\mu_{w}
$$

- Call this μ_{y}

The linear map

Since $y=A x+w$, we have

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{ll}
I & 0 \\
A & I
\end{array}\right]\left[\begin{array}{l}
x \\
w
\end{array}\right]
$$

- We will measure $y=y_{\text {meas }}$ and estimate x
- To do this, we would like the conditional pdf of $x \mid y=y_{\text {meas }}$
- For this, we need the joint pdf of x and y

The joint pdf

The joint pdf p of x and y is

$$
p(x, y)=p^{x}(x) p^{w}(y-A x)
$$

because the joint pdf of x, w is

$$
p_{1}\left(\left[\begin{array}{c}
x \\
w
\end{array}\right]\right)=p^{x}(x) p^{w}(w)
$$

and we know

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{ll}
I & 0 \\
A & I
\end{array}\right]\left[\begin{array}{c}
x \\
w
\end{array}\right]
$$

$z=H u$ implies $p^{z}(a)=|\operatorname{det} H|^{-1} p^{u}\left(H^{-1}(u)\right)$, so

$$
p(x, y)=p_{1}\left(\left[\begin{array}{cc}
1 & 0 \\
-A & I
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)
$$

The covariance

Let $\Sigma_{w}=\boldsymbol{\operatorname { c o v }}(w)$ and $\Sigma_{x}=\boldsymbol{\operatorname { c o v }}(x)$. We have

$$
\operatorname{cov}\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{cc}
\Sigma_{x} & \Sigma_{x} A^{T} \\
A \Sigma_{x} & A \Sigma_{x} A^{T}+\Sigma_{w}
\end{array}\right]
$$

- Call this $\left[\begin{array}{cc}\Sigma_{x} & \Sigma_{x y} \\ \Sigma_{y x} & \Sigma_{y}\end{array}\right]$. Above holds because $\operatorname{cov}\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{cc}I & 0 \\ A & I\end{array}\right]\left[\begin{array}{cc}\Sigma_{x} & 0 \\ 0 & \Sigma_{w}\end{array}\right]\left[\begin{array}{cc}I & 0 \\ A & I\end{array}\right]^{T}$
- Then $\boldsymbol{\operatorname { c o v }}(y)=A \Sigma_{x} A^{T}+\Sigma_{w}$
- $A \Sigma_{x} A^{T}$ is 'signal covariance'
- Σ_{w} is 'noise covariance'

Example: uniform pdfs

Suppose $x \sim \mathcal{U}[-2,2]$ and $w \sim \mathcal{U}[-1,1]$ and we measure $y=x+w$.

The joint pdf and MMSE estimator are

Notice the estimator is not $x_{\text {est }}=y_{\text {meas }}$, because of the prior information that $x \in[-2,2]$.

The importance of the prior

- $x \sim \mathcal{U}[-2,2]$ as before
- $w \sim \mathcal{U}[-0.3,0.3]$; signal x is large relative to the noise w

The joint pdf and MMSE estimator are

The estimator is almost $x_{\text {est }}=y_{\text {meas }}$

The importance of the prior

- $x \sim \mathcal{U}[-2,2]$ as before
- $w \sim \mathcal{U}[-10,10]$; signal x is small relative to the noise w
- The joint pdf and MMSE estimator are shown.
- The estimator mostly ignores the measurement
- The estimate is almost the prior mean $\mathbf{E} x=0$

Linear measurements with Gaussian noise

We have the linear model

$$
y=A x+w
$$

- $x \sim \mathcal{N}\left(0, \Sigma_{x}\right)$ and $w \sim \mathcal{N}\left(0, \Sigma_{w}\right)$ are independent
- So $\left[\begin{array}{l}x \\ y\end{array}\right]$ is Gaussian, with mean and covariance

$$
\mathbf{E}\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \quad \operatorname{cov}\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{cc}
\Sigma_{x} & \Sigma_{x} A^{T} \\
A \Sigma_{x} & A \Sigma_{x} A^{T}+\Sigma_{w}
\end{array}\right]
$$

Linear measurements with Gaussian noise

The MMSE estimate of x given $y=y_{\text {meas }}$ is

$$
\hat{x}_{\text {mmse }}=\Sigma_{x} A^{T}\left(A \Sigma_{x} A^{T}+\Sigma_{w}\right)^{-1} y_{\text {meas }}
$$

because we know $\hat{x}_{\text {mmse }}=\Sigma_{x y} \Sigma_{y}^{-1} y_{\text {meas }}$

The matrix $L=\Sigma_{x} A^{T}\left(A \Sigma_{x} A^{T}+\Sigma_{w}\right)^{-1}$ is called the estimator gain

Example: linear measurements with Gaussian noise

Suppose $y=2 x+w$, with

- prior covariance $\operatorname{cov}(x)=1$
- noise covariance $\operatorname{cov}(w)=3$
the estimator is

$$
x_{\text {mmse }}=\frac{2 y_{\text {meas }}}{7}
$$

The MMSE estimator gives a smaller answer than just inverting A,

$$
\left|x_{\text {mmse }}\right| \leq\left|A^{-1} y_{\text {meas }}\right|
$$

since we have prior information about x

Non-zero means

Suppose $x \sim \mathcal{N}\left(\mu_{x}, \Sigma_{x}\right)$ and $w \sim \mathcal{N}\left(\mu_{w}, \Sigma_{w}\right)$.

The MMSE estimate of x given $y=y_{\text {meas }}$ is

$$
\hat{x}_{\text {mmse }}=\mu_{x}+\Sigma_{x} A^{T}\left(A \Sigma_{x} A^{T}+\Sigma_{w}\right)^{-1}\left(y_{\text {meas }}-A \mu_{x}-\mu_{w}\right)
$$

The signal to noise ratio

Suppose where x, y and w are scalar, and $y=A x+w$. The signal-to-noise ratio is

$$
s=\frac{\sqrt{A^{2} \sum_{x}}}{\sqrt{\sum_{w}}}
$$

- Commonly used for scalar w, x, y; no use in vector case
- In terms of s, the MMSE estimate is

$$
\begin{aligned}
x_{\text {mmse }} & =\mu_{x}+\frac{A \Sigma_{x}}{A^{2} \Sigma_{x}+\Sigma_{w}}\left(y_{\text {meas }}-A \mu_{x}\right) \\
& =\frac{1}{1+s^{2}} \mu_{x}+\frac{s^{2}}{1+s^{2}} A^{-1} y_{\text {meas }}
\end{aligned}
$$

Scalar systems and the SNR

The MMSE estimate is

$$
x_{\text {mmse }}=\frac{1}{1+s^{2}} \mu_{x}+\frac{s^{2}}{1+s^{2}} A^{-1} y_{\text {meas }}
$$

- let $\theta=\frac{1}{1+s^{2}}$, then $x_{\text {mmse }}=\theta \mu_{x}+(1-\theta) A^{-1} y$
a convex linear combination of the prior mean and the least-squares estimate
- when s is small, $x_{\text {mmse }} \approx \mu_{x}$, the prior mean
- when s is large, $x_{\text {mmse }} \approx A^{-1} y$, the least-squares estimate of y

Example: small noise

Suppose $y=2 x+w$, with

- prior covariance $\operatorname{cov}(x)=1$
- noise covariance $\operatorname{cov}(w)=0.4$; signal is large compared to noise

Hence

- $\operatorname{SNR} s=\frac{\sqrt{A^{2} \Sigma_{x}}}{\sqrt{\Sigma_{w}}} \approx 3.2$
- Estimate is

$$
\begin{aligned}
x_{\text {mmse }} & =\frac{s^{2}}{1+s^{2}} A^{-1} y_{\text {meas }} \\
& \approx 0.9 A^{-1} y_{\text {meas }}
\end{aligned}
$$

i.e., close to $y_{\text {meas }} / 2$

Example: large noise

Suppose $y=2 x+w$, with

- prior covariance $\operatorname{cov}(x)=1$
- noise covariance $\operatorname{cov}(w)=20$; signal is small compared to noise

Hence

- $\operatorname{SNR} s=\frac{\sqrt{A^{2} \Sigma_{x}}}{\sqrt{\Sigma_{w}}} \approx 0.45$
- Estimate is

$$
\begin{aligned}
x_{\text {mmse }} & =\frac{s^{2}}{1+s^{2}} A^{-1} y_{\text {meas }} \\
& \approx 0.17 A^{-1} y_{\text {meas }}
\end{aligned}
$$

i.e., closer to 0 for all $y_{\text {meas }}$

The posterior covariance

The posterior covariance of x given $y=y_{\text {meas }}$ is

$$
\operatorname{cov}\left(x \mid y=y_{\text {meas }}\right)=\sum_{x}-\sum_{x} A^{T}\left(A \sum_{x} A^{T}+\sum_{w}\right)^{-1} A \sum_{x}
$$

- above follows because

$$
\operatorname{cov}\left(x \mid y=y_{\text {meas }}\right)=\Sigma_{x}-\Sigma_{x y} \Sigma_{y}^{-1} \Sigma_{y x}
$$

- We can use this to compute the MSE since

$$
\mathbf{E}\left(\left\|x-\hat{x}_{\text {mmse }}\right\|^{2} \mid y=y_{\text {meas }}\right)=\operatorname{trace} \operatorname{cov}\left(x \mid y=y_{\text {meas }}\right)
$$

The posterior covariance and SNR

For scalar problems, the posterior covariance of x given $y=y_{\text {meas }}$ is

$$
\operatorname{cov}\left(x \mid y=y_{\text {meas }}\right)=\frac{\Sigma_{x}}{1+s^{2}}
$$

- The uncertainty (covariance) in x is reduced by the factor $\frac{1}{1+s^{2}}$ by measurement

Example: navigation

$x=\left[\begin{array}{l}p \\ q\end{array}\right]$ our location, we measure distances r_{i} to m beacons at points $\left(u_{i}, v_{i}\right)$

assume p, q are small compared to u_{i}, v_{i}. then, approximately

$$
y=A x
$$

- $A \in \mathbb{R}^{m \times 2}, i$ th row of A is the transpose of unit vector in the direction of beacon i
- $y=\left[\begin{array}{c}\sqrt{u_{1}^{2}+v_{1}^{2}}-r_{1} \\ \vdots \\ \sqrt{u_{m}^{2}+v_{m}^{2}}-r_{m}\end{array}\right]$ measured vector of distances

Example: navigation

here $A \in \mathbb{R}^{3 \times 2}$ with

$$
A=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
$$

and $y=A x$. Each b_{i} is a unit vector.

- Prior information is $x \sim \mathcal{N}\left(\left[\begin{array}{l}4 \\ 4\end{array}\right],\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]\right)$
- y is measured; y_{i} is range measurement in the direction b_{i} with noise w added
- beacons at $\left[\begin{array}{c}50 \\ 0\end{array}\right],\left[\begin{array}{l}20 \\ 50\end{array}\right],\left[\begin{array}{c}-50 \\ -50\end{array}\right]$
- figure shows prior 90% confidence ellipsoid

Example: posterior confidence ellipsoids

Posterior confidence ellipsoids for two different possible noise covariances.

$$
\Sigma_{w}=\left[\begin{array}{lll}
0.01 & & \\
& 1 & \\
& & 1
\end{array}\right]
$$

$$
\Sigma_{w}=\left[\begin{array}{lll}
1 & & \\
& 1 & \\
& & 0.01
\end{array}\right]
$$

Alternative formula

There is another way to write the posterior covariance:

$$
\operatorname{cov}\left(x \mid y=y_{\text {meas }}\right)=\left(\Sigma_{x}^{-1}+A^{T} \Sigma_{w}^{-1} A\right)^{-1}
$$

- follows from the Sherman-Morrison-Woodbury formula

$$
\left(A-B D^{-1} C\right)^{-1}=A^{-1}+A^{-1} B\left(D-C A^{-1} B\right)^{-1} C A^{-1}
$$

- This is very useful when we have fewer unknowns than measurements; i.e., Σ_{x} is smaller that $A \Sigma_{x} A^{T}$

Alternative formula

There is also an alternative formula for the estimator gain

$$
L=\left(\Sigma_{x}^{-1}+A^{T} \Sigma_{w}^{-1} A\right)^{-1} A^{T} \Sigma_{w}^{-1}
$$

- Because

$$
\begin{aligned}
L & =\Sigma_{x} A^{T}\left(A \Sigma_{x} A^{T}+\Sigma_{w}\right)^{-1} \\
& =\Sigma_{x} A^{T}\left(\Sigma_{w}^{-1} A \Sigma_{x} A^{T}+I\right)^{-1} \Sigma_{w}^{-1} \\
& =\left(\Sigma_{x} A^{T} \Sigma_{w}^{-1} A+I\right)^{-1} \Sigma_{x} A^{T} \Sigma_{w}^{-1} \quad \text { by push-through identity } \\
& =\left(A^{T} \Sigma_{w}^{-1} A+\Sigma_{x}^{-1}\right)^{-1} A^{T} \Sigma_{w}^{-1}
\end{aligned}
$$

Comparison with least-squares

The least-squares approach minimizes

$$
\|y-A x\|^{2}=\sum_{i=1}^{m}\left(y_{i}-a_{i}^{T} x\right)^{2}
$$

where $A=\left[\begin{array}{llll}a_{1} & a_{2} & \ldots & a_{m}\end{array}\right]^{T}$

Suppose instead we minimize

$$
\sum_{i=1}^{m} w_{i}\left(y_{i}-a_{i}^{T} x\right)^{2}
$$

where $w_{1}, w_{2}, \ldots, w_{m}$ are positive weights

Weighted norms

More generally, let's look at weighted norms
contours of the 2 -norm

$$
\|x\|_{2}=\sqrt{x^{T} x}
$$

contours of the weighted-norm

$$
\begin{aligned}
\|x\|_{W} & =\sqrt{x^{T} W x} \\
& =\left\|W^{\frac{1}{2}} x\right\|_{2}
\end{aligned}
$$

where $W=\left[\begin{array}{ll}2 & 1 \\ 1 & 4\end{array}\right]$

Weighted least squares

the weighted least-squares problem; given $y_{\text {meas }} \in \mathbb{R}^{m}$,

$$
\text { minimize } \quad\left\|y_{\text {meas }}-A x\right\|_{W}
$$

assume $A \in \mathbb{R}^{m \times n}$, skinny, full rank, and $W \in \mathbb{R}^{m \times m}$ and $W>0$
then (by differentiating) the optimum x is

$$
x_{\mathrm{wls}}=\left(A^{T} W A\right)^{-1} A^{T} W y_{\text {meas }}
$$

Weighted least squares

- if there is no noise, y lies in range A
- the weighted least-squares estimate $x_{\text {wls }}$ minimizes

$$
\left\|y_{\text {meas }}-A x\right\|_{W}
$$

- $A x_{\text {wls }}$ is the closest (in weighted-norm) point in range A to $y_{\text {meas }}$

MMSE and weighted least squares

suppose we choose weight $W=\Sigma_{w}^{-1}$; then WLS solution is

$$
x_{\mathrm{wls}}=\left(A^{T} \Sigma_{w}^{-1} A\right)^{-1} A^{T} \Sigma_{w}^{-1} y_{\text {meas }}
$$

compare with MMSE estimate when $x \sim \mathcal{N}\left(0, \Sigma_{x}\right)$ and $w \sim \mathcal{N}\left(0, \Sigma_{w}\right)$

$$
x_{\text {mmse }}=\left(\Sigma_{x}^{-1}+A^{T} \Sigma_{w}^{-1} A\right)^{-1} A^{T} \Sigma_{w}^{-1} y_{\text {meas }}
$$

- as the prior covariance $\Sigma_{x} \rightarrow \infty$, the MMSE estimate tends to the WLS estimate
- if $\Sigma_{w}=I$ then MMSE tends to usual least-squares solution as $\Sigma_{x} \rightarrow \infty$
- the weighted norm heavily penalizes the residual $y-A x$ in low-noise directions

