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The linear model

A very important class of estimation problems is the /inear model

y=Ax+w

e 1 and w are independent
e We have induced pdfs p* for x and p*“ for w

e Thematrix Aism X n

We measure 4y = Ymeas and would like to estimate x
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The mean

o let y, =Ez and p, = Ew

e Then

Ey = Ap, + p

o Call this p,
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The linear map

Since y = Ax + w, we have

e We will measure y = ymeas and estimate x
e To do this, we would like the conditional pdf of x|y = Ymeas

e For this, we need the joint pdf of z and y



The joint pdf
The joint pdf p of x and y is

plx,y) = p*(x)p*“(y — Az)

because the joint pdf of z, w is

and we know

» = Hu implies p*(a) = |det H|'p"(H ' (v)), so

e =r([ 29 [
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The covariance

Let >, = cov(w) and ¥, = cov(x). We have

a:'] B [ Yo ¥ AT

=V [y AR, AL AT 43,

T
e Call this [Zx Za’"y]. Above holds because cov [x] = [I O] [Zx O] [I 0]
Diyr Dy Y

e Then cov(y) = A, Al + 2,
o AX, A" is ‘signal covariance’

e >, is ‘noise covariance'



11 -7 The linear model S. Lall, Stanford 2011.02.15.01

Example: uniform pdfs

Suppose x ~ U|[—2,2] and w ~ U[—1, 1] and we measure y = x + w.

The joint pdf and MMSE estimator are

3

Notice the estimator is not Test = Ymeas, because of the prior information that = € [—2, 2].
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The importance of the prior
o x ~ U[-2,2] as before

o w ~ U[—0.3,0.3]; signal = is large relative to the noise w

The joint pdf and MMSE estimator are

3

-3 -2 -1 0 1 2 3

The estimator is almost Test = Ymeas
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The importance of the prior

o x ~ U[-2,2] as before

o w ~ U[—10,10]; signal = is small relative to the noise w

5 . -

e The joint pdf and MMSE estimator are shown.
O . .

e The estimator mostly ignores the measurement
_5 - . .

e The estimate is almost the prior mean Ex = (
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Linear measurements with Gaussian noise

We have the /inear model

y=Axr +w

o z~ N(0,%,) and w ~ N(0,%,) are independent

e So [y] is Gaussian, with mean and covariance

y| = |0 OViyl = |Ax, Ax,AT £ %,
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Linear measurements with Gaussian noise

The MMSE estimate of = given ¥ = Ymeas IS

C%mmse — Z:L'AT(AZ:EAT + Zw)_lymeas

because we know Zmmse = Ly 2, Ymeas

The matrix L = X, AT (AX, AT +¥,) 7! is called the estimator gain
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Example: linear measurements with Gaussian noise

Suppose y = 2x + w, with 6

e prior covariance cov(zx) = 1

e noise covariance cov(w) = 3 a4l SRR A /
2 ..........
the estimator is
2ymeas ,
Lmmse — - or -

The MMSE estimator gives a smaller answer than just
inverting A,

[Zrmmsel < A Ymeas|

since we have prior information about x _é o 2
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Non-zero means

Suppose = ~ N (1, X,) and w ~ N (piy, L)

The MMSE estimate of = given ¥ = Ymeas IS

Tmmse = Moy + ZxAT(AZxAT + Zw)_1<ymeas - AM:U - Mw)
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The signal to noise ratio

Suppose where x, y and w are scalar, and y = Ax + w. The signal-to-noise ratio is

e Commonly used for scalar w, x, y; no use in vector case

e |n terms of s, the MMSE estimate is

N A, (
//L.f Azzx _|_ Z,w ymeas

xmmse _

B 1 N s?
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Scalar systems and the SNR
The MMSE estimate is

1 s
frmee =yt T T

1

2 then Tymse = Opt, + (1 — 0) A~y

o let ) =

a convex linear combination of the prior mean and the least-squares estimate

e when s is small, Tynmse = (4, the prior mean

e when s is large, Tmmse = A1y, the least-squares estimate of y
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Example: small noise

Suppose y = 2x + w, with

e prior covariance cov(zx) = 1

e noise covariance cov(w) = 0.4; signal is large
compared to noise

Hence
VA2,
e SNR s = ~ 3.2
V2
e Estimate is
X — —82 -1
mmse 1 _|_ 82 ymeas

~ O.9A_1ymeas

i.e., close to Ymeas/2 -6 i ; ;
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Example: large noise

Suppose y = 2x + w, with

e prior covariance cov(zx) = 1

e noise covariance cov(w) = 20; signal is small
compared to noise

Hence
VA2,

e SNR s = ~ (.45

V 2
e Estimate is

x — 8—2 _1y

mmse 1_'_ 82 me€s A0 WA\ /101r ]
~ 0.17A  Ymeas

I.e., closer to 0 for all Ymeas
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The posterior covariance

The posterior covariance of = given ¥ = Ymeas IS

COV (T | Y = Ymeas) = Xy — 8, AT (AX, AT +3,) AT,

e above follows because

CcCoV (x ‘ Y = ymeas) =2, — nyZy_lZ]yx

e We can use this to compute the MSE since

E(|lz — Zmmsel” ‘ Y = Umeas) = trace cov (x ‘ Y = Ymeas)
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The posterior covariance and SNR

For scalar problems, the posterior covariance of x given ¥ = Ymeas IS

Dy
1+ 52

cov (:C ‘ Yy = ymeas) =

e The uncertainty (covariance) in x is reduced by the factor 5 by measurement

+ S
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Example: navigation

T = []q?] our location, we measure distances 7; to m beacons at points (u;, v;)

A

(us, v3)
x

Pl X

(w4, 04)/4

assume p, g are small compared to u;, v;. then, approximately

1 (Ub Ul)

Y

y = Ax

o A c R™2 jth row of A is the transpose of unit vector in the direction of beacon

— 5 5 -

o Yy = : measured vector of distances

/02 2
| um—l_vm Tm_
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Example: navigation 5
here A € R3*? with 4
o
A= |b ’
_bg_

and y = Az. Each b; is a unit vector.

I Prior mean
actual location
0 1 1 1 1
3 4 5 6 7 8

. . 41 12 0
e Prior information is z ~ ./\/(L] : [O 2])

e 1 is measured; y; is range measurement in the direction b; with noise w added

o b . 50 20 —50
eacons at | |, |-ql, | _=

e figure shows prior 90% confidence ellipsoid
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Example: posterior confidence ellipsoids

S. Lall, Stanford

Posterior confidence ellipsoids for two different possible noise covariances.
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Alternative formula

There is another way to write the posterior covariance:

COV (Z | Y = Ymeas) = (Z;l + ATZ;lA)_l

e follows from the Sherman-Morrison-Woodbury formula

(A-BD'CY'=A"1+A'B(D-CcA'B)'CcA™!

e This is very useful when we have fewer unknowns than measurements; i.e., X, is

smaller that AY, A"
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Alternative formula

There is also an alternative formula for the estimator gain

L=+ A A tATS !

e Because

L=, AT (A, AT +%,)!
=y, AN A, AT )it
= (S, AT A+ )Tie, AT by push-through identity

— (AT A+ h Ay !
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Comparison with least-squares

The least-squares approach minimizes

m

ly — Az|? =Y (y; — al'z)’

1=1

Suppose instead we minimize

sz — a; x)2

where wy, wo, ..., w,, are positive weights
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Weighted norms

More generally, let's look at weighted norms

contours of the 2-norm

T

lzfls = Vo'
contours of the weighted-norm
||| = Vol Wa
1
= [[W2z]]

2 1
where VW = [1 4]

S. Lall, Stanford 2011.02.15.01
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Weighted least squares

the weighted least-squares problem; given Ymeas € R,

minimize | Ymeas — Ax||w

assume A € R™*" skinny, full rank, and W € R™* and W > 0

then (by differentiating) the optimum z is

Lwls = (ATWA) _1ATWymeas
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Weighted least squares

Rm

Ymeas

range(A) \\ ~ )
Lest

e if there is no noise, y lies in range A

e the weighted least-squares estimate x,,s minimizes

||ymeas — AZUHW

e Auxys is the closest (in weighted-norm) point in range A to Ymeas
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MMSE and weighted least squares

suppose we choose weight W = X1 then WLS solution is

Lwls = (ATZ@_UlA’éD _1ATZI_Ulymeas

compare with MMSE estimate when = ~ A(0,%,) and w ~ N(0, %2,

Lmmse — <Z;1 + ATZ@_U1A>_1AT21;1ymeas

e as the prior covariance >, — oo, the MMSE estimate tends to the WLS estimate
e if X, = I then MMSE tends to usual least-squares solution as >, — o0

e the weighted norm heavily penalizes the residual y — Ax in low-noise directions



