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The linear model

A very important class of estimation problems is the linear model

y = Ax + w

• x and w are independent

• We have induced pdfs px for x and pw for w

• The matrix A is m × n

We measure y = ymeas and would like to estimate x
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The mean

• Let µx = E x and µw = Ew

• Then

E y = Aµx + µw

• Call this µy
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The linear map

Since y = Ax + w, we have
[

x
y

]

=

[

I 0
A I

] [

x
w

]

• We will measure y = ymeas and estimate x

• To do this, we would like the conditional pdf of x | y = ymeas

• For this, we need the joint pdf of x and y
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The joint pdf

The joint pdf p of x and y is

p(x, y) = px(x)pw(y − Ax)

because the joint pdf of x, w is

p1

([

x
w

])

= px(x)pw(w)

and we know
[

x
y

]

=

[

I 0
A I

] [

x
w

]

z = Hu implies pz(a) = |det H|−1pu(H−1(u)), so

p(x, y) = p1

([

I 0
−A I

] [

x
y

])
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The covariance

Let Σw = cov(w) and Σx = cov(x). We have

cov

[

x
y

]

=

[

Σx ΣxA
T

AΣx AΣxA
T + Σw

]

• Call this

[

Σx Σxy

Σyx Σy

]

. Above holds because cov

[

x
y

]

=

[

I 0
A I

] [

Σx 0
0 Σw

] [

I 0
A I

]T

• Then cov(y) = AΣxA
T + Σw

• AΣxA
T is ‘signal covariance’

• Σw is ‘noise covariance’
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Example: uniform pdfs

Suppose x ∼ U [−2, 2] and w ∼ U [−1, 1] and we measure y = x + w.

The joint pdf and MMSE estimator are
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Notice the estimator is not xest = ymeas, because of the prior information that x ∈ [−2, 2].
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The importance of the prior

• x ∼ U [−2, 2] as before

• w ∼ U [−0.3, 0.3]; signal x is large relative to the noise w

The joint pdf and MMSE estimator are
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The estimator is almost xest = ymeas
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The importance of the prior

• x ∼ U [−2, 2] as before

• w ∼ U [−10, 10]; signal x is small relative to the noise w

• The joint pdf and MMSE estimator are shown.

• The estimator mostly ignores the measurement

• The estimate is almost the prior mean E x = 0
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Linear measurements with Gaussian noise

We have the linear model

y = Ax + w

• x ∼ N (0, Σx) and w ∼ N (0, Σw) are independent

• So

[

x
y

]

is Gaussian, with mean and covariance

E

[

x
y

]

=

[

0
0

]

cov

[

x
y

]

=

[

Σx ΣxA
T

AΣx AΣxA
T + Σw

]
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Linear measurements with Gaussian noise

The MMSE estimate of x given y = ymeas is

x̂mmse = ΣxA
T (AΣxA

T + Σw)−1ymeas

because we know x̂mmse = ΣxyΣ
−1

y ymeas

The matrix L = ΣxA
T (AΣxA

T + Σw)−1 is called the estimator gain
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Example: linear measurements with Gaussian noise

Suppose y = 2x + w, with

• prior covariance cov(x) = 1

• noise covariance cov(w) = 3

the estimator is

xmmse =
2ymeas

7

The MMSE estimator gives a smaller answer than just
inverting A,

|xmmse| ≤ |A−1ymeas|

since we have prior information about x
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Non-zero means

Suppose x ∼ N (µx, Σx) and w ∼ N (µw, Σw).

The MMSE estimate of x given y = ymeas is

x̂mmse = µx + ΣxA
T (AΣxA

T + Σw)−1(ymeas − Aµx − µw)
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The signal to noise ratio

Suppose where x, y and w are scalar, and y = Ax + w. The signal-to-noise ratio is

s =

√
A2Σx√
Σw

• Commonly used for scalar w, x, y; no use in vector case

• In terms of s, the MMSE estimate is

xmmse = µx +
AΣx

A2Σx + Σw
(ymeas − Aµx)

=
1

1 + s2
µx +

s2

1 + s2
A−1ymeas
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Scalar systems and the SNR

The MMSE estimate is

xmmse =
1

1 + s2
µx +

s2

1 + s2
A−1ymeas

• let θ =
1

1 + s2
, then xmmse = θµx + (1 − θ)A−1y

a convex linear combination of the prior mean and the least-squares estimate

• when s is small, xmmse ≈ µx, the prior mean

• when s is large, xmmse ≈ A−1y, the least-squares estimate of y
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Example: small noise

Suppose y = 2x + w, with

• prior covariance cov(x) = 1

• noise covariance cov(w) = 0.4; signal is large
compared to noise

Hence

• SNR s =

√
A2Σx√
Σw

≈ 3.2

• Estimate is

xmmse =
s2

1 + s2
A−1ymeas

≈ 0.9A−1ymeas

i.e., close to ymeas/2
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Example: large noise

Suppose y = 2x + w, with

• prior covariance cov(x) = 1

• noise covariance cov(w) = 20; signal is small
compared to noise

Hence

• SNR s =

√
A2Σx√
Σw

≈ 0.45

• Estimate is

xmmse =
s2

1 + s2
A−1ymeas

≈ 0.17A−1ymeas

i.e., closer to 0 for all ymeas
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The posterior covariance

The posterior covariance of x given y = ymeas is

cov
(

x
∣

∣ y = ymeas

)

= Σx − ΣxA
T (AΣxA

T + Σw)−1AΣx

• above follows because

cov
(

x
∣

∣ y = ymeas

)

= Σx − ΣxyΣ
−1

y Σyx

• We can use this to compute the MSE since

E
(

‖x − x̂mmse‖2
∣

∣ y = ymeas

)

= trace cov
(

x
∣

∣ y = ymeas

)
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The posterior covariance and SNR

For scalar problems, the posterior covariance of x given y = ymeas is

cov
(

x
∣

∣ y = ymeas

)

=
Σx

1 + s2

• The uncertainty (covariance) in x is reduced by the factor
1

1 + s2
by measurement
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Example: navigation

x =

[

p
q

]

our location, we measure distances ri to m beacons at points (ui, vi)

r2
r3

r4

r1
(p; q)

(u1; v1)

(u2; v2)

(u3; v3)

(u4; v4)

assume p, q are small compared to ui, vi. then, approximately

y = Ax

• A ∈ R
m×2, ith row of A is the transpose of unit vector in the direction of beacon i

• y =





√

u2

1
+ v2

1
− r1

...
√

u2
m + v2

m − rm



 measured vector of distances
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Example: navigation

here A ∈ R
3×2 with

A =





b1

b2

b3





and y = Ax. Each bi is a unit vector.

• Prior information is x ∼ N
([

4
4

]

,

[

2 0
0 2

])

• y is measured; yi is range measurement in the direction bi with noise w added

• beacons at

[

50
0

]

,

[

20
50

]

,

[

−50
−50

]

• figure shows prior 90% confidence ellipsoid
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Example: posterior confidence ellipsoids

Posterior confidence ellipsoids for two different possible noise covariances.
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Alternative formula

There is another way to write the posterior covariance:

cov
(

x | y = ymeas

)

=
(

Σ−1

x + ATΣ−1

w A
)−1

• follows from the Sherman-Morrison-Woodbury formula

(A − BD−1C)−1 = A−1 + A−1B(D − CA−1B)−1CA−1

• This is very useful when we have fewer unknowns than measurements; i.e., Σx is
smaller that AΣxA

T
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Alternative formula

There is also an alternative formula for the estimator gain

L = (Σ−1

x + ATΣ−1

w A)−1ATΣ−1

w

• Because

L = ΣxA
T (AΣxA

T + Σw)−1

= ΣxA
T (Σ−1

w AΣxA
T + I)−1Σ−1

w

= (ΣxA
TΣ−1

w A + I)−1ΣxA
TΣ−1

w by push-through identity

= (ATΣ−1

w A + Σ−1

x )−1ATΣ−1

w
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Comparison with least-squares

The least-squares approach minimizes

‖y − Ax‖2 =

m
∑

i=1

(

yi − aT
i x

)2

where A =
[

a1 a2 . . . am

]T

Suppose instead we minimize
m

∑

i=1

wi

(

yi − aT
i x

)2

where w1, w2, . . . , wm are positive weights
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Weighted norms

More generally, let’s look at weighted norms

contours of the 2-norm

‖x‖2 =
√

xTx

contours of the weighted-norm

‖x‖W =
√

xTWx

= ‖W 1

2x‖2

where W =

[

2 1
1 4

]
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Weighted least squares

the weighted least-squares problem; given ymeas ∈ R
m,

minimize ‖ymeas − Ax‖W

assume A ∈ R
m×n, skinny, full rank, and W ∈ R

m×m and W > 0

then (by differentiating) the optimum x is

xwls = (ATWA)−1ATWymeas
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Weighted least squares

Axest

range(A)

ymeas

R
m

• if there is no noise, y lies in rangeA

• the weighted least-squares estimate xwls minimizes

‖ymeas − Ax‖W

• Axwls is the closest (in weighted-norm) point in rangeA to ymeas
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MMSE and weighted least squares

suppose we choose weight W = Σ−1

w ; then WLS solution is

xwls = (ATΣ−1

w A)−1ATΣ−1

w ymeas

compare with MMSE estimate when x ∼ N (0, Σx) and w ∼ N (0, Σw)

xmmse = (Σ−1

x + ATΣ−1

w A)−1ATΣ−1

w ymeas

• as the prior covariance Σx → ∞, the MMSE estimate tends to the WLS estimate

• if Σw = I then MMSE tends to usual least-squares solution as Σx → ∞

• the weighted norm heavily penalizes the residual y − Ax in low-noise directions


