2 - Probability on Finite Sets

- Modeling physical phenomena
- Probability on finite sets
- The sample space and the pmf
- Events
- Unions, intersections and complements
- The axioms of probability
- Partitions
- Conditional probability
- Independence
- Dependent events

Modeling Physical Phenomena

- The deterministic way: write differential equations

Differential equations are constructed from

- physical principles
- experiments

Use the model to predict the approximate behavior of the system

- The probabilistic way: specify the probability of events

Probabilities are derived from

- physical principles, e.g., time symmetry for noise
- experiments; i.e., observed frequency of events

Again, we use the model to predict the approximate behavior of the system e.g., in approximately 95% of trials the hovercraft will deviate less than 3 m from the given trajectory

Probability on Finite Sets

- The sample space is a finite set Ω; it's elements are called outcomes. Exactly one outcome occurs in every experiment.
- Function $p: \Omega \rightarrow[0,1]$ is called a probability mass function (pmf) if

$$
p(a) \geq 0 \text { for all } a \in \Omega \quad \text { and } \quad \sum_{a \in \Omega} p(a)=1
$$

Then $p(a)$ is the probability that outcome $a \in \Omega$ occurs

Events

An event is a subset of Ω

For example, if $\Omega=\{1, \ldots, 2 n\}$, the following are events

- $A=\{2,4,6, \ldots, 2 n\}$, which we would call the event that the outcome is even
- $A=\{x \in \Omega \mid x \geq 32\}$, which we would call the event that the outcome is ≥ 32

The probability of an event is

$$
\operatorname{Prob}(A)=\sum_{b \in A} p(b)
$$

Prob : $2^{\Omega} \rightarrow[0,1]$ is called a probability measure

Example: $\operatorname{Prob}(A)=0.275, \operatorname{Prob}(B)=0.65$

Unions, Intersections and Complements

For any sets $A, B \subset \Omega$ we have

$$
\operatorname{Prob}(A \cup B)=\operatorname{Prob}(A)+\operatorname{Prob}(B)-\operatorname{Prob}(A \cap B)
$$

We interpret

$$
\begin{aligned}
& A \cup B \\
& A \cap B \\
& A^{c}=\{b \in \Omega \mid b \notin A\}
\end{aligned}
$$

is the event that A or B happens
is the event that A and B happens
is the event that A does not happen

Notation

Notice that Prob really depends on

- the sample space Ω
- and the probability mass function p

Sometimes we will write

$$
\underset{\Omega, p}{\operatorname{Prob}}(A)
$$

to specify which Ω and p are being used

Axioms of Probability

We have for all $A, B \subset \Omega$
(i) $\operatorname{Prob}(A) \geq 0$
(ii) $\operatorname{Prob}(\Omega)=1$
(iii) if $A \cap B=\emptyset$ then $\operatorname{Prob}(A \cup B)=\operatorname{Prob}(A)+\operatorname{Prob}(B)$

- The above three conditions are called the axioms of probability for finite sets Ω
- If Prob: $2^{\Omega} \rightarrow \mathbb{R}$ satisfies the above, then we can construct a probability mass function via

$$
p(b)=\operatorname{Prob}(\{b\}) \quad \text { for all } b \in \Omega
$$

and p will be positive and sum to one as required.

Partitions

The set of events $A_{1}, A_{2}, \ldots, A_{n}$ is called a partition of Ω if

$$
\begin{array}{ll}
A_{i} \cap A_{j}=\emptyset & \text { for all } i \neq j \\
A_{1} \cup A_{2} \cup \cdots \cup A_{n}=\Omega & \text { called mutually exclusive } \\
\text { called collectively exhaustive }
\end{array}
$$

Then for any $B \subset \Omega$ we have

$$
\operatorname{Prob}(B)=\sum_{i=1}^{n} \operatorname{Prob}\left(B \cap A_{i}\right)
$$

called the Law of Total Probability

Conditional Probability

Suppose A and B are events, and $\operatorname{Prob}(B) \neq 0$. Define the conditional probability of A given B by

$$
\operatorname{Prob}(A \mid B)=\frac{\operatorname{Prob}(A \cap B)}{\operatorname{Prob}(B)}
$$

Example: suppose $B=\{x \in \Omega \mid x \geq 10\}$

If we perform many repeated experiments, and throw away all $x \notin B$, then the observed frequency of outcomes $x \in B$ will increase.

Conditional Probability

Conditioning defines a new probability mass function on Ω.
The conditional pmf is

$$
p_{2}(a)= \begin{cases}\frac{p(a)}{\operatorname{Prob}(B)} & \text { if } a \in B \\ 0 & \text { otherwise }\end{cases}
$$

Then we have, for any $A \subset \Omega$

$$
\operatorname{Prob}_{\Omega, p}(A \mid B)=\underset{\Omega, p_{2}}{\operatorname{Prob}}(A)
$$

Independence

Two events A and B are called independent if

$$
\operatorname{Prob}(A \cap B)=\operatorname{Prob}(A) \operatorname{Prob}(B)
$$

- If $\operatorname{Prob}(B) \neq 0$ this is equivalent to

$$
\operatorname{Prob}(A \mid B)=\operatorname{Prob}(A)
$$

- if A and B are dependent, then knowing whether event A occurs also gives information regarding event B

Independence

Events A and B are independent if and only if $\operatorname{rank}(M)=1$ where

$$
M=\left[\begin{array}{ll}
\operatorname{Prob}(A \cap B) & \operatorname{Prob}\left(A \cap B^{c}\right) \\
\operatorname{Prob}\left(A^{c} \cap B\right) & \operatorname{Prob}\left(A^{c} \cap B^{c}\right)
\end{array}\right]
$$

M is called the joint probability matrix.

- A and B are independent means the probabilities of A occurring do not change when we discard those outcomes when B occurs.
- The probabilities of A and A^{c} occurring are the row sums

$$
\left[\begin{array}{l}
\operatorname{Prob}(A) \\
\operatorname{Prob}\left(A^{c}\right)
\end{array}\right]=M 1
$$

When $\operatorname{rank}(M)=1$, each column is some multiple of M1

$$
M=\left[\begin{array}{c}
\operatorname{Prob}(A) \\
\operatorname{Prob}\left(A^{c}\right)
\end{array}\right]\left[\begin{array}{ll}
\operatorname{Prob}(B) & \left.\operatorname{Prob}\left(B^{c}\right)\right]
\end{array}\right.
$$

Example: two dice

Two dice. Pick sample space

$$
\Omega=\left\{\left(\omega_{1}, \omega_{2}\right) \mid \omega_{i} \in\{1,2, \ldots, 6\}\right\}
$$

Two events are

- the sum is greater than 5

$$
A=\left\{\omega \in \Omega \mid \omega_{1}+\omega_{2}>5\right\}
$$

- the first dice is greater than 3

$$
B=\left\{\omega \in \Omega \mid \omega_{1}>3\right\}
$$

Example: two dice

By measuring B, we have information about A, because

$$
\begin{array}{r}
\operatorname{Prob}(A)=\frac{26}{36} \\
\operatorname{Prob}(A \mid B)=\frac{17}{18}
\end{array}
$$

- This is an example of estimation

- By measuring one random quantity, we have information about another
- More refined questions: what is the conditional distribution of the sum? What should we pick as an estimate?
- Later we will see problems of the form

$$
y=A x+w
$$

w is random, we measure y, and would like to know x

