2 - 1 Probability on Finite Sets

2 - Probability on Finite Sets

- Modeling physical phenomena
- Probability on finite sets
- The sample space and the pmf
- Events
- Unions, intersections and complements
- The axioms of probability
- Partitions
- Conditional probability
- Independence
- Dependent events

2 - 2 Probability on Finite Sets

Modeling Physical Phenomena

- The deterministic way: write *differential equations* Differential equations are constructed from
 - physical principles
 - experiments

Use the model to *predict the approximate behavior* of the system

- The probabilistic way: specify the probability of events Probabilities are derived from
 - physical principles, e.g., time symmetry for noise
 - experiments; i.e., observed frequency of events

Again, we use the model to *predict the approximate behavior* of the system e.g., in approximately 95% of trials the hovercraft will deviate less than 3m from the given trajectory

Probability on Finite Sets

- The sample space is a finite set Ω; it's elements are called outcomes. Exactly one outcome occurs in every experiment.
- Function $p: \Omega \to [0,1]$ is called a *probability mass function (pmf)* if

$$p(a) \ge 0$$
 for all $a \in \Omega$ and $\sum_{a \in \Omega} p(a) = 1$

Then p(a) is the probability that outcome $a\in\Omega$ occurs

Events

An *event* is a subset of Ω

For example, if $\Omega = \{1, \ldots, 2n\}$, the following are events

- $A = \{2, 4, 6, \dots, 2n\}$, which we would call the event that the outcome is even
- $A = \{x \in \Omega \mid x \ge 32\}$, which we would call the event that the outcome is ≥ 32

The probability of an event is

$$\mathbf{Prob}(A) = \sum_{b \in A} p(b)$$

 $\mathbf{Prob}: 2^{\Omega} \rightarrow [0, 1]$ is called a *probability measure*

Example: Prob(A) = 0.275, Prob(B) = 0.65

2 - 5 Probability on Finite Sets

Unions, Intersections and Complements

For any sets $A, B \subset \Omega$ we have

$$\mathbf{Prob}(A \cup B) = \mathbf{Prob}(A) + \mathbf{Prob}(B) - \mathbf{Prob}(A \cap B)$$

We interpret

$$A \cup B$$
$$A \cap B$$
$$A^{c} = \{ b \in \Omega \mid b \notin A \}$$

is the event that A or B happens is the event that A and B happens is the event that A does not happen

Notation

Notice that $\operatorname{\mathbf{Prob}}$ really depends on

- the sample space Ω
- and the probability mass function \boldsymbol{p}

Sometimes we will write

 $\mathop{\mathbf{Prob}}_{\Omega,\,p}(A)$

to specify which Ω and p are being used

Axioms of Probability

- We have for all $A, B \subset \Omega$
- (i) $Prob(A) \ge 0$
- (ii) $\operatorname{Prob}(\Omega) = 1$
- (iii) if $A \cap B = \emptyset$ then $\operatorname{Prob}(A \cup B) = \operatorname{Prob}(A) + \operatorname{Prob}(B)$

- The above three conditions are called the *axioms of probability* for finite sets Ω
- If $\mathbf{Prob}:2^\Omega\to\mathbb{R}$ satisfies the above, then we can construct a probability mass function via

$$p(b) = \operatorname{\mathbf{Prob}}(\{b\})$$
 for all $b \in \Omega$

and p will be positive and sum to one as required.

Partitions

The set of events A_1, A_2, \ldots, A_n is called a *partition* of Ω if

 $A_i \cap A_j = \emptyset$ for all $i \neq j$ called *mutually exclusive* $A_1 \cup A_2 \cup \cdots \cup A_n = \Omega$ called *collectively exhaustive*

Then for any $B \subset \Omega$ we have

$$\operatorname{Prob}(B) = \sum_{i=1}^{n} \operatorname{Prob}(B \cap A_i)$$

called the Law of Total Probability

Conditional Probability

Suppose A and B are events, and $\operatorname{Prob}(B) \neq 0$. Define the *conditional probability of* A given B by

$$\mathbf{Prob}(A \mid B) = \frac{\mathbf{Prob}(A \cap B)}{\mathbf{Prob}(B)}$$

Example: suppose $B = \{ x \in \Omega \mid x \ge 10 \}$

If we perform many repeated experiments, and throw away all $x \notin B$, then the observed frequency of outcomes $x \in B$ will increase.

Conditional Probability

Conditioning defines a new probability mass function on $\Omega.$

The *conditional pmf* is

$$p_2(a) = \begin{cases} \frac{p(a)}{\mathbf{Prob}(B)} & \text{if } a \in B\\ 0 & \text{otherwise} \end{cases}$$

Then we have, for any $A\subset \Omega$

$$\operatorname{Prob}_{\Omega, p}(A \mid B) = \operatorname{Prob}_{\Omega, p_2}(A)$$

Independence

Two events A and B are called *independent* if

$$\operatorname{\mathbf{Prob}}(A \cap B) = \operatorname{\mathbf{Prob}}(A) \operatorname{\mathbf{Prob}}(B)$$

• If $\mathbf{Prob}(B) \neq 0$ this is equivalent to

$$\mathbf{Prob}(A \mid B) = \mathbf{Prob}(A)$$

• if A and B are *dependent*, then knowing whether event A occurs also gives information regarding event B

2 - 12 Probability on Finite Sets

Independence

Events A and B are independent if and only if $\mathbf{rank}(M)=1$ where

$$M = \begin{bmatrix} \mathbf{Prob}(A \cap B) & \mathbf{Prob}(A \cap B^c) \\ \mathbf{Prob}(A^c \cap B) & \mathbf{Prob}(A^c \cap B^c) \end{bmatrix}$$

M is called the *joint probability matrix*.

- A and B are independent means the probabilities of A occurring do not change when we discard those outcomes when B occurs.
- The probabilities of A and A^c occurring are the row sums

$$\begin{bmatrix} \mathbf{Prob}(A) \\ \mathbf{Prob}(A^c) \end{bmatrix} = M\mathbf{1}$$

When rank(M) = 1, each column is some multiple of M1

$$M = \begin{bmatrix} \mathbf{Prob}(A) \\ \mathbf{Prob}(A^c) \end{bmatrix} \begin{bmatrix} \mathbf{Prob}(B) & \mathbf{Prob}(B^c) \end{bmatrix}$$

Example: two dice

Two dice. Pick sample space

$$\Omega = \left\{ (\omega_1, \omega_2) \mid \omega_i \in \{1, 2, \dots, 6\} \right\}$$

Two events are

• the sum is greater than 5

$$A = \left\{ \omega \in \Omega \mid \omega_1 + \omega_2 > 5 \right\}$$

• the first dice is greater than 3

$$B = \left\{ \, \omega \in \Omega \mid \omega_1 > 3 \, \right\}$$

Example: two dice

By measuring B, we have information about A, because

$$\mathbf{Prob}(A) = \frac{26}{36}$$
$$\mathbf{Prob}(A \mid B) = \frac{17}{18}$$

- This is an example of *estimation*
- By measuring one random quantity, we have information about another
- More refined questions: what is the conditional distribution of the sum? What should we pick as an estimate?
- Later we will see problems of the form

$$y = Ax + w$$

 \boldsymbol{w} is random, we measure $\boldsymbol{y},$ and would like to know \boldsymbol{x}

