3 - Random Variables

- Estimation
- Example: radar
- Example: communication channel
- Example: force on mass
- Events corresponding to random variables
- Induced probability
- Functions of a random variable
- Cumulative distribution
- Simulation of random variables
- Expectation
- The vector space of random variables
- Variance and its interpretation
- The mean-variance decomposition

Random variables

Suppose Ω is a finite sample space, with pmf p

A function $x: \Omega \rightarrow V$ is called a random variable.

- The set V can be any set; it is the set of values of x.
- Often V is \mathbb{R}^{n} or just \mathbb{R}; then x is called a random vector

Random variables and models

We model systems using random variables.

- Ω is a sample space. Exactly one outcome $\omega \in \Omega$ occurs.
- We have a measurement random vector $y: \Omega \rightarrow \mathbb{R}^{n}$.
- We have a hypothesis random vector $x: \Omega \rightarrow \mathbb{R}^{n}$

Estimation

- We measure $y(\omega)$
- We would like to estimate $x(\omega)$

Example: radar system

A radar system sends out n pulses, and receives y reflections, where $0 \leq y \leq n$. Ideally, $y=n$ if an aircraft is present, and $y=0$ otherwise.
In practice, reflections may be lost, or noise may be mistaken for reflections.

The set of outcomes is

$$
\Omega=\{(x, y) \mid x \in\{0,1\} \text { and } y \in\{0,1, \ldots, n\}\}
$$

Here

- $x=1$ if an aircraft is present, $x=0$ otherwise
- y is the number of reflection pulses received

We measure y, and would like to determine x.

Example: communication channel

- A symbol $x \in\{0,1, \ldots, n-1\}$ is sent.
- The channel is noisy, so the symbol received may not match what is sent.
- The symbol $y \in\{0,1, \ldots, n-1\}$ is received.

The set of outcomes is

$$
\Omega=\{(x, y) \mid x \in\{0,1, \ldots, n-1\} \text { and } y \in\{0,1, \ldots, n-1\}\}
$$

We measure y, and would like to determine x.

Example: force on mass

Mass acted on by forces

- known sequence of forces $u_{1}, u_{2}, \ldots, u_{n}$

- additional random force disturbance $r_{1}, r_{2}, \ldots, r_{n}$
- we make a noisy measurement $y=v+$ position at time $n / 2$ where v is random noise
- we'd like to estimate or predict the position x at time n

The set of outcomes is $\Omega=\mathbb{R}^{n+1}$, where $\omega=\left[\begin{array}{l}v \\ r\end{array}\right]$
We have linear equations

$$
\begin{aligned}
& y=A(u+r)+v \\
& x=P(u+r)
\end{aligned}
$$

Estimation

We would like to design estimators.

Performance measures include

- the probability that the estimate is correct
- the mean size of the error, in some sense
- the bias of the estimator
- continuous problems: are estimates on average too low or too high?
- discrete problems: what are the probabilities of false positives or false negatives?

Random variables

We have

- sample space Ω, a finite set
- probability mass function $p: \Omega \rightarrow[0,1]$
- a random variable $x: \Omega \rightarrow \mathbb{R}$

Suppose $a \in \mathbb{R}$. The probability that $x=a$ is defined as

$$
\operatorname{Prob}(\{\omega \in \Omega \mid x(\omega)=a\})
$$

This is equal to

$$
\sum_{\omega \in \Omega} \mid x(\omega)=a=1
$$

Example: two dice

We have sample space

$$
\Omega=\left\{\left(\omega_{1}, \omega_{2}\right) \in \Omega \mid \omega_{i} \in\{1,2, \ldots, 6\}\right\}
$$

Define the random variable $x: \Omega \rightarrow \mathbb{R}$, the sum of the two dice by

$$
x\left(\omega_{1}, \omega_{2}\right)=\omega_{1}+\omega_{2}
$$

Then $\operatorname{Prob}(x=5)=\operatorname{Prob}(A)$ where the event A is

$$
A=\{\omega \in \Omega \mid x(\omega)=5\}
$$

Probability and random variables

The probability of the event that $x=a$ is written $\operatorname{Prob}(x=a)$, i.e.,

$$
\operatorname{Prob}(x=a)=\operatorname{Prob}(\{\omega \in \Omega \mid x(\omega)=a\})
$$

Suppose $\Omega=\{1,2,3,4,5\}$ and p is as shown

The random variable $x: \Omega \rightarrow \mathbb{R}$ is

$x(\omega)= \begin{cases}-1 & \text { if } \omega=1 \text { or } \omega=2 \\ 1 & \text { if } \omega=3 \text { or } \omega=4 \\ 2 & \text { if } \omega=5\end{cases}$
and $\operatorname{Prob}(x=a)$ is shown.

Notations used for random variables

- The event that $x=a$ is written

$$
x^{-1}(a)=\{\omega \in \Omega \mid x(\omega)=a\}
$$

- The probability of this event is written as $\operatorname{Prob}(x=a)$
- This is also written $p^{x}(a)=\operatorname{Prob}(x=a)$

Notation for random variables
There are many similar notations used: for example, define

- $\operatorname{Prob}(x=a)=\operatorname{Prob}\left(x^{-1}(a)\right)$
- $\operatorname{Prob}(x \geq a)=\operatorname{Prob}(\{\omega \in \Omega \mid x(\omega) \geq a\})$
- If $C \subset V$, then $\operatorname{Prob}(x \in C)=\operatorname{Prob}(\{\omega \in \Omega \mid x(\omega) \in C\})$

Events corresponding to random variables

Suppose $x: \Omega \rightarrow V$. Each $a \in V$ defines an event

$$
x^{-1}(a)=\{\omega \in \Omega \mid x(\omega)=a\}
$$

These events partition Ω

For example, if $\Omega=\{1,2,3,4,5\}$ and the random variable x is

$$
x(\omega)= \begin{cases}-1 & \text { if } \omega=1 \text { or } \omega=2 \\ 1 & \text { if } \omega=3 \text { or } \omega=4 \\ 2 & \text { if } \omega=5\end{cases}
$$

The events associated with x are

$$
x^{-1}(-1)=\{1,2\} \quad x^{-1}(1)=\{3,4\} \quad x^{-1}(2)=\{5\}
$$

Example: sum of two dice

The events are

Induced probability

Suppose $x: \Omega \rightarrow V$. The induced pmf of x is the function $p^{x}: V \rightarrow[0,1]$

$$
p^{x}(a)=\operatorname{Prob}(x=a)
$$

It satisfies the properties of a probability mass function

- $p^{x}(a) \geq 0$ for all $a \in V$
- $\sum_{a \in V} p^{x}(a)=1$
because the events $x^{-1}(a)$ partition Ω, so

$$
\sum_{a \in V} p^{x}(a)=\sum_{a \in V} \operatorname{Prob}\left(x^{-1}(a)\right)=1
$$

Example: sum of two dice

The induced pdf is below

Random variables

Another name for a random variable is a change of variables

The map x induces the pmf p^{x} on V

Example: sum of two dice

So there are two ways to compute, for example, $\operatorname{Prob}(x=4$ or $x=5)$

- There are seven corresponding outcomes ω in Ω, each with probability $1 / 36$.

$$
\operatorname{Prob}(x=4 \text { or } x=5)=\operatorname{Prob}(\{\omega \in \Omega \mid x(\omega)=4 \text { or } x(\omega)=5\})
$$

- Or alternatively: $\quad \operatorname{Prob}(x=4$ or $x=5)=p^{x}(4)+p^{x}(5)$

Example: sum of two dice

Another example: suppose we want to compute

$$
\operatorname{Prob}\left((x-6)^{2}=16\right)
$$

- By definition

$$
\operatorname{Prob}\left((x-6)^{2}=16\right)=\operatorname{Prob}\left(\left\{\omega \in \Omega \mid(x(\omega)-6)^{2}=16\right\}\right)
$$

- Or using the induced pmf

$$
\operatorname{Prob}\left((x-6)^{2}=16\right)=\sum_{a \in C} p^{x}(a)
$$

where

$$
C=\left\{a \in V \mid(a-6)^{2}=16\right\}
$$

Example: sum of two dice

We can also do this another way: let $f: \mathbb{R} \rightarrow \mathbb{R}$ be

$$
f(x)=(x-6)^{2}
$$

and define the random variable $y=f(x)$, which means $y(\omega)=f(x(\omega))$

Then

$$
\operatorname{Prob}(y=16)=p^{y}(16)
$$

Example: functions of a random variable

- Suppose $\Omega=\{1,2,3,4,5\}$ and p is as shown

- The random variable $x: \Omega \rightarrow \mathbb{R}$ is

$$
x(\omega)= \begin{cases}-1 & \text { if } \omega=1 \text { or } \omega=2 \\ 1 & \text { if } \omega=3 \text { or } \omega=4 \\ 2 & \text { if } \omega=5\end{cases}
$$

- The random variable $y=x^{2}$, meaning

$$
y(\omega)=x(\omega)^{2} \text { for all } \omega \in \Omega
$$

Functions of a random variable

- x is a random variable $x: \Omega \rightarrow V$
- y is a function of x, that is $f: V \rightarrow U$ and $y=f(x)$

Then y defines a random variable $y(\omega)=f(x(\omega))$. The induced pmf of y is

$$
p^{y}(b)=\sum_{a \in V \mid y(a)=b} p^{x}(a)
$$

Functions of a random variable

Because

$$
\begin{aligned}
p^{y}(b) & =\sum_{\omega \in \Omega \mid y(x(w))=b} p(\omega) \\
& =\sum_{a \in V \mid y(a)=b} \sum_{\omega \in \Omega \mid x(\omega)=a} p(\omega) \\
& =\sum_{a \in V \mid y(a)=b} p^{x}(a)
\end{aligned}
$$

Induced sample spaces

We've seen two ways to compute $\operatorname{Prob}(y=b)$

- As a sum over the sample space Ω

$$
\operatorname{Prob}(y=b)=\sum_{\omega \in \Omega \mid y(x(w))=b} p(\omega)
$$

- As a sum over the set V

$$
\operatorname{Prob}(y=b)=\sum_{a \in V \mid y(a)=b} p^{x}(a)
$$

Hence we can think of V as a new sample space, called the induced sample space, with pmf $p^{x}: V \rightarrow[0,1]$

We can compute probabilities of functions of x without knowing the original sample space Ω and the pmf p.

The cumulative distribution

Suppose $x: \Omega \rightarrow \mathbb{R}$ is a real-valued random variable; for example

The cumulative distribution (cdf) of x is a function $F: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
F(a)=\operatorname{Prob}(x \leq a)
$$

- F is piecewise constant
- F is right continuous

The uniform random variable

In many codes, one has access to a uniform random number generator.

The key property is, for $0 \leq a \leq b \leq 1$

$$
\operatorname{Prob}(u \in[a, b])=b-a
$$

- In Matlab this is u=rand; not randn.
- More on continuous random variables later...

Simulation of random variables

Suppose $x: \Omega \rightarrow \mathbb{R}$ is a random variable with $\operatorname{cdf} F$
Define the function $g: \mathbb{R} \rightarrow \mathbb{R}$ as below (it's almost the inverse of F)

If u is uniform, then

$$
\operatorname{Prob}(g(u)=a)=\operatorname{Prob}(x=a)
$$

and so one can simulate x by setting $x=g(u)$.

Expectation

Suppose $x: \Omega \rightarrow \mathbb{R}$ is a real-valued random variable. The expectation of x is

$$
\mathbf{E} x=\sum_{\omega \in \Omega} x(\omega) p(\omega)
$$

- Also called the mean of x or the expected value of x

Example: expectation

Suppose $\Omega=\{1,2,3,4,5\}$, and p is plotted

Let random variable $x: \Omega \rightarrow R$ be

$$
x(a)= \begin{cases}-1 & \text { if } a=1 \text { or } a=2 \\ 1 & \text { if } a=3 \text { or } a=4 \\ 2 & \text { if } a=5\end{cases}
$$

The expectation is

$$
\mathbf{E} x=-0.1-0.15+0.1+0.25+2(0.4)=0.9
$$

Vector spaces

The set of real-valued random variables is a vector space.

Because if x and y are two random variables, so is $\lambda x+\mu y$.

- Suppose $\Omega=\left\{\omega_{1}, \omega_{2}, \ldots, \omega_{n}\right\}$
- Suppose $x: \Omega \rightarrow \mathbb{R}$ is a random variable.
- Define the vector $r \in \mathbb{R}^{n}$ by

$$
r_{i}=x\left(\omega_{i}\right) \quad \text { for all } i=1, \ldots, n
$$

Usually we abuse notation and use x to denote both the vector $r \in \mathbb{R}^{n}$ and the random variable $x: \Omega \rightarrow \mathbb{R}$.

Vector spaces

We can also represent the $\operatorname{pmf} p: \Omega \rightarrow[0,1]$ by a vector.
Define the vector $p \in \mathbb{R}^{n}$ (again abusing notation) by

$$
p_{i}=p\left(\omega_{i}\right) \quad \text { for all } i=1, \ldots, n
$$

- The vector p defines a pmf if and only if $\mathbf{1}^{T} p=1$ and $p \succeq 0$, where
- $p \succeq 0$ means $p_{i} \geq 0$ for all $i=1, \ldots, n$
- $\mathbf{1}$ is the vector of all ones
- A vector p satisfying these conditions is called a distribution vector

Expectation and vector representations

It's easy to compute the expected value of the random variable x.

$$
\mathbf{E} x=p^{T} x
$$

Because

$$
\begin{aligned}
\mathbf{E} x & =\sum_{\omega \in \Omega} x(\omega) p(\omega) \\
& =\sum_{i=1}^{n} x_{i} p_{i}
\end{aligned}
$$

Hence expectation is linear

$$
\mathbf{E}(\alpha x+\beta y)=\alpha \mathbf{E} x+\beta \mathbf{E} y
$$

Example: expectation

Suppose $\Omega=\{1,2,3,4,5\}$, and p is plotted

The random variable $x=\left[\begin{array}{r}-1 \\ -1 \\ 1 \\ 1 \\ 2\end{array}\right]$ and $p=\left[\begin{array}{c}0.1 \\ 0.15 \\ 0.1 \\ 0.25 \\ 0.4\end{array}\right]$

The expectation is $\mathrm{E} x=p^{T} x=-0.1-0.15+0.1+0.25+2(0.4)=0.9$

Another way to compute expectation

Suppose $x: \Omega \rightarrow V$ and $V \subset \mathbb{R}$. The expectation of x is also given by

$$
\mathbf{E} x=\sum_{a \in V} a p^{x}(a)
$$

e.g., the random variable $x: \Omega \rightarrow \mathbb{R}$ has induced pmf as shown.

So the expectation is

$$
\mathbf{E} x=-0.25+0.35+2(0.4)=0.9
$$

Another way to compute expectation

Because

$$
\begin{aligned}
\sum_{\omega \in \Omega} x(\omega) p(\omega) & =\sum_{a \in V} \sum_{\omega \in \Omega, x(\omega)=a} x(\omega) p(\omega) \\
& =\sum_{a \in V} a \sum_{\omega \in \Omega, x(\omega)=a} p(\omega) \\
& =\sum_{a \in V} a p^{x}(a)
\end{aligned}
$$

Again there are two ways to compute

- summing over Ω

$$
\mathbf{E} x=\sum_{\omega \in \Omega} x(\omega) p(\omega)
$$

- summing over V

$$
\mathbf{E} x=\sum_{a \in V} a p^{x}(a)
$$

Interpreting the mean

The mean is

$$
\mathbf{E} x=\sum_{a \in \mathbb{R}} a p^{x}(a)
$$

- We interpret the mean as the center of mass of the distribution
- The plot below shows the induced pmf of x

Variance

Suppose $x: \Omega \rightarrow \mathbb{R}$ is a random variable. The covariance of x is

$$
\operatorname{cov}(x)=\mathbf{E}\left((x-\mathbf{E} x)^{2}\right)
$$

- Measures the mean square deviation from the mean
- Another common notation: the standard deviation is

$$
\operatorname{std}(x)=\sqrt{\operatorname{cov}(x)}
$$

- The covariance is also called the variance

Intepreting the covariance

The following are the induced pmfs of two random variables

Standard deviations are $\operatorname{std}(x)=3.5$ and $\operatorname{std}(y)=6.5$.

- The covariance gives a measure of how wide the range of values of a random variable extends around the mean.
- A small covariance means that the pmf is concentrated around the mean

Variance

We have the variance is

$$
\operatorname{cov}(x)=\mathrm{E}\left((x-\mathbf{E} x)^{2}\right)
$$

What this means is:

- Let $\mu \in \mathbb{R}$ be the expected value of x; i.e., $\mu=\mathbf{E} x$.
- Define a new random variable $y: \Omega \rightarrow \mathbb{R}$ by

$$
y(\omega)=(x(\omega)-\mu)^{2} \quad \text { for all } \omega \in \Omega
$$

- Then $\operatorname{cov}(x)=\mathbf{E} y$
- Several ways to compute this: by summing over Ω, or summing over the values of x, or summing over the values of y

Example: variance

Suppose $\Omega=\{1,2,3,4,5\}$ and p is below.

The random variable x is $x(\omega)= \begin{cases}3 & \text { if } \omega=1 \text { or } \omega=2 \\ 4 & \text { if } \omega=3 \\ 6 & \text { if } \omega=4 \text { or } \omega=5\end{cases}$
Hence $\mathbf{E} x=4$, and the random variable $y=(x-\mathbf{E} x)^{2}$ is

$$
y(\omega)= \begin{cases}(3-4)^{2} & \text { if } \omega=1 \text { or } \omega=2 \\ (4-4)^{2} & \text { if } \omega=3 \\ (6-4)^{2} & \text { if } \omega=4 \text { or } \omega=5\end{cases}
$$

Hence $\boldsymbol{\operatorname { c o v }}(x)=\mathbf{E}(y)=1.5$

Mean-variance decomposition

The mean square of x is $\mathbf{E}\left(x^{2}\right)$. We have

$$
\mathbf{E}\left(x^{2}\right)=(\mathbf{E} x)^{2}+\operatorname{cov}(x)
$$

Called the mean-variance decomposition.

Easy to see; for convenience let $\mu=\mathbf{E} x$. Then

$$
\begin{aligned}
\operatorname{cov}(x) & =\mathbf{E}\left((x-\mu)^{2}\right) \\
& =\mathbf{E}\left(x^{2}-2 \mu x+\mu^{2}\right) \\
& =\mathbf{E}\left(x^{2}\right)-2 \mu \mathbf{E} x+\mu^{2} \\
& =\mathbf{E}\left(x^{2}\right)-\mu^{2}
\end{aligned}
$$

Moments of a random variable

Suppose $x: \Omega \rightarrow \mathbb{R}$ is a random variable. The n 'th moment of x is

$$
\mathbf{E}\left(x^{n}\right)=\sum_{\omega \in \Omega} x(\omega)^{n} p(\omega)
$$

- The mean $\mathbf{E} x$ is the first moment of x
- The covariance is the second moment minus the square of the first moment.

