3 - Random Variables

- Estimation
- Example: radar
- Example: communication channel
- Example: force on mass
- Events corresponding to random variables
- Induced probability
- Functions of a random variable
- Cumulative distribution
- Simulation of random variables
- Expectation
- The vector space of random variables
- Variance and its interpretation
- The mean-variance decomposition

Random variables

Suppose Ω is a finite sample space, with pmf p

A function $x: \Omega \to V$ is called a *random variable*.

- The set V can be any set; it is the set of values of x.
- Often V is \mathbb{R}^n or just \mathbb{R} ; then x is called a *random vector*

Random variables and models

We model systems using random variables.

- Ω is a sample space. Exactly one outcome $\omega \in \Omega$ occurs.
- We have a *measurement random vector* $y : \Omega \to \mathbb{R}^n$.
- We have a hypothesis random vector $x : \Omega \to \mathbb{R}^n$

Estimation

- We measure $y(\omega)$
- We would like to estimate $x(\omega)$

Example: radar system

A radar system sends out n pulses, and receives y reflections, where $0 \le y \le n$. Ideally, y = n if an aircraft is present, and y = 0 otherwise.

In practice, reflections may be lost, or noise may be mistaken for reflections.

The set of outcomes is

$$\Omega = \left\{ \, (x,y) \mid x \in \{0,1\} \text{ and } y \in \{0,1,\dots,n\} \, \right\}$$

Here

- x = 1 if an aircraft is present, x = 0 otherwise
- y is the number of reflection pulses received

We measure y, and would like to determine x.

Example: communication channel

- A symbol $x \in \{0, 1, \dots, n-1\}$ is sent.
- The channel is noisy, so the symbol received may not match what is sent.
- The symbol $y \in \{0, 1, \dots, n-1\}$ is received.

The set of outcomes is

$$\Omega = \left\{ (x, y) \mid x \in \{0, 1, \dots, n-1\} \text{ and } y \in \{0, 1, \dots, n-1\} \right\}$$

We measure y, and would like to determine x.

Example: force on mass

Mass acted on by forces

- known sequence of forces u_1, u_2, \ldots, u_n
- additional random force disturbance r_1, r_2, \ldots, r_n
- we make a *noisy measurement* y = v + position at time n/2 where v is random noise
- we'd like to estimate or predict the position \boldsymbol{x} at time \boldsymbol{n}

The set of outcomes is $\Omega = \mathbb{R}^{n+1}$, where $\omega = \begin{bmatrix} v \\ r \end{bmatrix}$ We have linear equations

$$y = A(u+r) + v$$
$$x = P(u+r)$$

Estimation

We would like to *design* estimators.

Performance measures include

- the probability that the estimate is correct
- the mean size of the error, in some sense
- the bias of the estimator
 - continuous problems: are estimates on average too low or too high?
 - discrete problems: what are the probabilities of false positives or false negatives?

Random variables

We have

- sample space Ω , a finite set
- probability mass function $p: \Omega \rightarrow [0, 1]$
- a random variable $x: \Omega \to \mathbb{R}$

Suppose $a \in \mathbb{R}$. The *probability that* x = a is defined as

$$\mathbf{Prob}\bigg(\Big\{\,\omega\in\Omega\mid x(\omega)=a\,\Big\}\bigg)$$

This is equal to

Example: two dice

We have sample space

$$\Omega = \left\{ (\omega_1, \omega_2) \in \Omega \mid \omega_i \in \{1, 2, \dots, 6\} \right\}$$

Define the random variable $x : \Omega \to \mathbb{R}$, the sum of the two dice by

$$x(\omega_1,\omega_2) = \omega_1 + \omega_2$$

Then $\operatorname{\mathbf{Prob}}(x=5) = \operatorname{\mathbf{Prob}}(A)$ where the event A is

$$A = \left\{ \, \omega \in \Omega \, \mid x(\omega) = 5 \, \right\}$$

Probability and random variables

The probability of the *event* that x = a is written $\mathbf{Prob}(x = a)$, i.e.,

$$\mathbf{Prob}(x=a) = \mathbf{Prob}\bigg(\Big\{\,\omega \in \Omega \mid x(\omega) = a\,\Big\}\bigg)$$

Suppose $\Omega = \{1, 2, 3, 4, 5\}$ and p is as shown

The random variable $x: \Omega \to \mathbb{R}$ is

$$x(\omega) = \begin{cases} -1 & \text{if } \omega = 1 \text{ or } \omega = 2\\ 1 & \text{if } \omega = 3 \text{ or } \omega = 4\\ 2 & \text{if } \omega = 5 \end{cases}$$

and $\operatorname{\mathbf{Prob}}(x=a)$ is shown.

Notations used for random variables

• The *event* that x = a is written

$$x^{-1}(a) = \left\{ \, \omega \in \Omega \mid x(\omega) = a \, \right\}$$

• The probability of this event is written as $\mathbf{Prob}(x=a)$

• This is also written $p^x(a) = \mathbf{Prob}(x = a)$

Notation for random variables

There are many similar notations used: for example, define

•
$$\operatorname{Prob}(x=a) = \operatorname{Prob}(x^{-1}(a))$$

•
$$\operatorname{Prob}(x \ge a) = \operatorname{Prob}(\{\omega \in \Omega \mid x(\omega) \ge a\})$$

• If $C \subset V$, then $\operatorname{Prob}(x \in C) = \operatorname{Prob}(\{\omega \in \Omega \mid x(\omega) \in C\})$

Events corresponding to random variables

Suppose $x : \Omega \to V$. Each $a \in V$ defines an event

$$x^{-1}(a) = \left\{ \, \omega \in \Omega \mid x(\omega) = a \, \right\}$$

These events partition $\boldsymbol{\Omega}$

For example, if $\Omega = \{1,2,3,4,5\}$ and the random variable x is

$$x(\omega) = \begin{cases} -1 & \text{if } \omega = 1 \text{ or } \omega = 2\\ 1 & \text{if } \omega = 3 \text{ or } \omega = 4\\ 2 & \text{if } \omega = 5 \end{cases}$$

The events associated with x are

$$x^{-1}(-1) = \{1, 2\}$$
 $x^{-1}(1) = \{3, 4\}$ $x^{-1}(2) = \{5\}$

The events are

Induced probability

Suppose $x : \Omega \to V$. The *induced pmf of* x is the function $p^x : V \to [0, 1]$

$$p^x(a) = \mathbf{Prob}(x=a)$$

It satisfies the properties of a probability mass function

•
$$p^x(a) \ge 0$$
 for all $a \in V$

•
$$\sum_{a \in V} p^x(a) = 1$$

because the events $x^{-1}(a)$ partition Ω , so

$$\sum_{a \in V} p^x(a) = \sum_{a \in V} \mathbf{Prob}\big(x^{-1}(a)\big) = 1$$

The induced pdf is below

Random variables

Another name for a random variable is a *change of variables*

The map \boldsymbol{x} induces the pmf $p^{\boldsymbol{x}}$ on V

So there are two ways to compute, for example, $\mathbf{Prob}(x = 4 \text{ or } x = 5)$

• There are seven corresponding outcomes ω in Ω , each with probability 1/36.

$$\mathbf{Prob}(x = 4 \text{ or } x = 5) = \mathbf{Prob}\Big(\big\{\omega \in \Omega \mid x(\omega) = 4 \text{ or } x(\omega) = 5\big\}\Big)$$

• Or alternatively:
$$\mathbf{Prob}(x = 4 \text{ or } x = 5) = p^x(4) + p^x(5)$$

Another example: suppose we want to compute

$$\mathbf{Prob}\big((x-6)^2 = 16\big)$$

• By definition

$$\operatorname{Prob}((x-6)^2 = 16) = \operatorname{Prob}\left(\left\{\omega \in \Omega \mid (x(\omega) - 6)^2 = 16\right\}\right)$$

• Or using the induced pmf

$$\operatorname{Prob}((x-6)^2 = 16) = \sum_{a \in C} p^x(a)$$

where

$$C = \left\{ a \in V \mid (a - 6)^2 = 16 \right\}$$

We can also do this another way: let $f : \mathbb{R} \to \mathbb{R}$ be

$$f(x) = (x - 6)^2$$

and define the random variable y=f(x), which means $y(\omega)=f(x(\omega))$

Then

$$\mathbf{Prob}(y=16) = p^y(16)$$

Example: functions of a random variable

• Suppose
$$\Omega = \{1, 2, 3, 4, 5\}$$
 and p is as shown

• The random variable $x: \Omega \to \mathbb{R}$ is

$$x(\omega) = \begin{cases} -1 & \text{if } \omega = 1 \text{ or } \omega = 2\\ 1 & \text{if } \omega = 3 \text{ or } \omega = 4\\ 2 & \text{if } \omega = 5 \end{cases}$$

• The random variable $y = x^2$, meaning

$$y(\omega) = x(\omega)^2$$
 for all $\omega \in \Omega$

Functions of a random variable

- x is a random variable $x: \Omega \to V$
- y is a function of x, that is $f: V \to U$ and y = f(x)

Then y defines a random variable $y(\omega) = f(x(\omega))$. The induced pmf of y is

$$p^{y}(b) = \sum_{a \in V \mid y(a)=b} p^{x}(a)$$

Functions of a random variable

Because

Induced sample spaces

We've seen two ways to compute $\mathbf{Prob}(y=b)$

 $\bullet\,$ As a sum over the sample space Ω

$$\mathbf{Prob}(y=b) = \sum_{\omega \in \Omega \mid y(x(w))=b} p(\omega)$$

• As a sum over the set ${\cal V}$

$$\mathbf{Prob}(y=b) = \sum_{a \in V \mid y(a)=b} p^x(a)$$

Hence we can think of V as a new sample space, called the *induced sample space*, with pmf $p^x:V\to [0,1]$

We can compute probabilities of functions of x without knowing the original sample space Ω and the pmf p.

The cumulative distribution

Suppose $x : \Omega \to \mathbb{R}$ is a real-valued random variable; for example

The *cumulative distribution* (cdf) of x is a function $F : \mathbb{R} \to \mathbb{R}$ given by

$$F(a) = \mathbf{Prob}(x \le a)$$

• F is piecewise constant

• *F* is *right continuous*

The uniform random variable

In many codes, one has access to a *uniform random number generator*.

The key property is, for $0 \le a \le b \le 1$

$$\mathbf{Prob}(u \in [a, b]) = b - a$$

- In Matlab this is u=rand; *not* randn.
- More on continuous random variables later...

Simulation of random variables

Suppose $x : \Omega \to \mathbb{R}$ is a random variable with cdf FDefine the function $g : \mathbb{R} \to \mathbb{R}$ as below (it's almost the inverse of F)

If u is *uniform*, then

$$\mathbf{Prob}\big(g(u) = a\big) = \mathbf{Prob}(x = a)$$

and so one can simulate x by setting x = g(u).

Expectation

Suppose $x : \Omega \to \mathbb{R}$ is a real-valued random variable. The *expectation* of x is

$$\mathbf{E}\, x = \sum_{\omega \in \Omega} x(\omega) p(\omega)$$

• Also called the *mean* of x or the *expected value* of x

Example: expectation

Suppose $\Omega = \{1, 2, 3, 4, 5\}$, and p is plotted

Let random variable $x: \Omega \to R$ be

$$x(a) = \begin{cases} -1 & \text{if } a = 1 \text{ or } a = 2\\ 1 & \text{if } a = 3 \text{ or } a = 4\\ 2 & \text{if } a = 5 \end{cases}$$

The expectation is $\mathbf{E} x = -0.1 - 0.15 + 0.1 + 0.25 + 2(0.4) = 0.9$

Vector spaces

The set of real-valued random variables is a vector space.

Because if x and y are two random variables, so is $\lambda x + \mu y$.

- Suppose $\Omega = \{ \omega_1, \omega_2, \dots, \omega_n \}$
- Suppose $x : \Omega \to \mathbb{R}$ is a random variable.
- Define the vector $r \in \mathbb{R}^n$ by

$$r_i = x(\omega_i)$$
 for all $i = 1, \ldots, n$

Usually we *abuse notation* and use x to denote both the vector $r \in \mathbb{R}^n$ and the random variable $x : \Omega \to \mathbb{R}$.

Vector spaces

We can also represent the pmf $p:\Omega\rightarrow [0,1]$ by a vector.

Define the vector $p \in \mathbb{R}^n$ (again abusing notation) by

 $p_i = p(\omega_i)$ for all $i = 1, \ldots, n$

• The vector p defines a pmf if and only if $\mathbf{1}^T p = 1$ and $p \succeq 0$, where

•
$$p \succeq 0$$
 means $p_i \ge 0$ for all $i = 1, \ldots, n$

• 1 is the vector of all ones

• A vector *p* satisfying these conditions is called a *distribution* vector

Expectation and vector representations

It's easy to compute the expected value of the random variable x.

$$\mathbf{E} \, x = p^T x$$

Because

$$\mathbf{E} \, x = \sum_{\omega \in \Omega} x(\omega) p(\omega)$$

$$=\sum_{i=1}x_ip_i$$

Hence expectation is *linear*

$$\mathbf{E}(\alpha x + \beta y) = \alpha \, \mathbf{E} \, x + \beta \, \mathbf{E} \, y$$

Example: expectation

The expectation is $\mathbf{E} x = p^T x = -0.1 - 0.15 + 0.1 + 0.25 + 2(0.4) = 0.9$

Another way to compute expectation

Suppose $x : \Omega \to V$ and $V \subset \mathbb{R}$. The *expectation* of x is also given by

$$\mathbf{E}\,x = \sum_{a \in V} a p^x(a)$$

e.g., the random variable $x : \Omega \to \mathbb{R}$ has induced pmf as shown.

So the expectation is

 $\mathbf{E} \, x = -0.25 + 0.35 + 2(0.4) = 0.9$

Another way to compute expectation

Because

$$\sum_{\omega \in \Omega} x(\omega) p(\omega) = \sum_{a \in V} \sum_{\omega \in \Omega, \ x(\omega) = a} x(\omega) p(\omega)$$
$$= \sum_{a \in V} a \sum_{\omega \in \Omega, \ x(\omega) = a} p(\omega)$$
$$= \sum_{a \in V} a p^{x}(a)$$

Again there are two ways to compute

• summing over Ω

$$\mathbf{E} \, x = \sum_{\omega \in \Omega} x(\omega) p(\omega)$$

• summing over V

$$\mathbf{E}\,x = \sum_{a \in V} a p^x(a)$$

Interpreting the mean

The mean is

$$\mathbf{E}\,x = \sum_{a \in \mathbb{R}} a p^x(a)$$

- We interpret the mean as the *center of mass* of the distribution
- The plot below shows the *induced pmf of* x

Variance

Suppose $x: \Omega \to \mathbb{R}$ is a random variable. The *covariance* of x is

$$\mathbf{cov}(x) = \mathbf{E}\Big((x - \mathbf{E}\,x)^2\Big)$$

- Measures the *mean square deviation from the mean*
- Another common notation: the *standard deviation* is

$$\mathbf{std}(x) = \sqrt{\mathbf{cov}(x)}$$

• The covariance is also called the *variance*

Intepreting the covariance

The following are the induced pmfs of two random variables

Standard deviations are $\mathbf{std}(x) = 3.5$ and $\mathbf{std}(y) = 6.5$.

- The covariance gives a measure of how *wide* the range of values of a random variable extends around the mean.
- A small covariance means that the pmf is concentrated around the mean

Variance

We have the variance is

$$\mathbf{cov}(x) = \mathbf{E}\Big((x - \mathbf{E}\,x)^2\Big)$$

What this means is:

• Let $\mu \in \mathbb{R}$ be the expected value of x; i.e., $\mu = \mathbf{E} x$.

• Define a new random variable $y: \Omega \to \mathbb{R}$ by

$$y(\omega) = (x(\omega) - \mu)^2$$
 for all $\omega \in \Omega$

• Then $\mathbf{cov}(x) = \mathbf{E} y$

Several ways to compute this: by summing over Ω, or summing over the values of x, or summing over the values of y

Example: variance

Suppose $\Omega = \{1, 2, 3, 4, 5\}$ and p is below.

The random variable x is $x(\omega) = \begin{cases} 3 & \text{if } \omega = 1 \text{ or } \omega = 2 \\ 4 & \text{if } \omega = 3 \\ 6 & \text{if } \omega = 4 \text{ or } \omega = 5 \end{cases}$

Hence $\mathbf{E} \, x = 4$, and the random variable $y = (x - \mathbf{E} \, x)^2$ is

$$y(\omega) = \begin{cases} (3-4)^2 & \text{if } \omega = 1 \text{ or } \omega = 2\\ (4-4)^2 & \text{if } \omega = 3\\ (6-4)^2 & \text{if } \omega = 4 \text{ or } \omega = 5 \end{cases}$$

Hence $\mathbf{cov}(x) = \mathbf{E}(y) = 1.5$

Mean-variance decomposition

The *mean square* of x is $\mathbf{E}(x^2)$. We have

$$\mathbf{E}(x^2) = (\mathbf{E}\,x)^2 + \mathbf{cov}(x)$$

Called the *mean-variance decomposition*.

Easy to see; for convenience let $\mu = \mathbf{E} x$. Then

$$\mathbf{cov}(x) = \mathbf{E}((x-\mu)^2)$$
$$= \mathbf{E}(x^2 - 2\mu x + \mu^2)$$
$$= \mathbf{E}(x^2) - 2\mu \mathbf{E} x + \mu^2$$
$$= \mathbf{E}(x^2) - \mu^2$$

Moments of a random variable

Suppose $x : \Omega \to \mathbb{R}$ is a random variable. The *n th moment* of *x* is

$$\mathbf{E}(x^n) = \sum_{\omega \in \Omega} x(\omega)^n p(\omega)$$

- The mean $\mathbf{E} x$ is the first moment of x
- The covariance is the second moment minus the square of the first moment.