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3 - Random Variables

e Estimation

e Example: radar

e Example: communication channel

e Example: force on mass

e Events corresponding to random variables
e Induced probability

e Functions of a random variable

e Cumulative distribution

e Simulation of random variables

e Expectation

e The vector space of random variables
e Variance and its interpretation

e The mean-variance decomposition
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Random variables

Suppose (2 is a finite sample space, with pmf p

A function x : {2 — V is called a random variable.

e The set V' can be any set; it is the set of values of x.

e Often V is R" or just R; then x is called a random vector
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Random variables and models

We model systems using random variables.
e ()is a sample space. Exactly one outcome w € () occurs.
e We have a measurement random vector y : {2 — R".

e We have a hypothesis random vector x : {) — R"

Estimation

o We measure y(w)

e We would like to estimate x(w)
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Example: radar system

A radar system sends out n pulses, and receives y reflections, where 0 < y < n.
|deally, ¥ = n if an aircraft is present, and y = 0 otherwise.

In practice, reflections may be lost, or noise may be mistaken for reflections.

15

The set of outcomes is 14
13

Q:{(a;,y)yxe{o,l}andye{o,L...,n}} ”
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Here 6

e 1 = 1 if an aircraft is present, x = 0 otherwise

e 1 is the number of reflection pulses received

We measure y, and would like to determine . o1
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Example: communication channel

e Asymbol x € {0,1,...,n — 1} is sent.

e The channel is noisy, so the symbol received
may not match what is sent.

e Thesymboly € {0,1,...,n—1} is received.

The set of outcomes is

O N W b 01 O N
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O 1 2 3 4 5 6 7

Q:{(az,y)‘xE{O,l,...,n—l}andyE{O,l,...,n—l}}

We measure y, and would like to determine .
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Example: force on mass

Mass acted on by forces S
e known sequence of forces ui, uo, ..., u, 1T
e additional random force disturbance ry,79,...,7,

e we make a noisy measurement y = v + position at time n /2

where v i1s random noise

e we'd like to estimate or predict the position x at time n

_ v
The set of outcomes is ) = R™""! where w = [7“]

We have linear equations
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Estimation

We would like to design estimators.

Performance measures include

e the probability that the estimate is correct
e the mean size of the error, in some sense

e the bias of the estimator

e continuous problems: are estimates on average too low or too high?

e discrete problems: what are the probabilities of false positives or false negatives?
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Random variables

We have

e sample space (), a finite set
e probability mass function p : 2 — [0, 1]

e a random variable z : {2 — R

Suppose a € R. The probability that x = a is defined as

Prob({w e Q| z(w) :a})

This is equal to

S. Lall, Stanford 2011.01.04.01
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Example: two dice

We have sample space

Q:{(wl,wg)eQ|wi€{1,2,...,6}}

Define the random variable z : {2 — R, the sum of the two dice by

r(wr, ws) = wy + wo

Then Prob(z = 5) = Prob(A) where the 30 © 0 o 0o ©
event A is

A:{w€Q|aj(w):5} 1o © o @ o o
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Probability and random variables

The probability of the event that © = a is written Prob(x = a), i.e.,

Prob(z = a) = Pmb({ weQ|zw) =a })

0.4 w w w T @

Suppose 2 = {1,2,3,4,5} and p is as shown 03 :
p(w) 0.2} T
The random variable z : {2 — R is v
(1 fwu=Tlorw=2 04 ‘ ‘ °
rw)=¢1 ifw=3orw=4 03]
\2 If w=2>s PI‘Ob(x = a) 0.2}
and Prob(x = a) is shown. o— R
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Notations used for random variables

e [he event that £ = a is written

x_l(a):{wEQM:(w):a}

e The probability of this event is written as Prob(z = a)

e This is also written p“(a) = Prob(z = a)
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Notation for random variables

There are many similar notations used: for example, define

e Prob(z = a) = Prob(z '(a))

e Prob(z >a)=Prob({weQ|zw)>a})

o If C'CV, then Prob(z € C) =Prob({w e Q| z(w) € C'})
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Events corresponding to random variables

Suppose = : {2 — V. Each a € V defines an event

x_l(a):{wegﬂx(w):a}

These events partition ()

For example, if €2 = {1,2,3,4,5} and the random variable x is

(] fw=lorw=2
rw)=<1 fw=3orw=4
\2 if w=2>5

The events associated with x are

v(=1)={L2} 2 ()={34 2 (2={5
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Example: sum of two dice

The events are




3-15 Probability on Finite Sets S. Lall, Stanford 2011.01.04.01

Induced probability
Suppose x : ) — V. The induced pmf of x is the function p* : V' — [0, 1]

p“(a) = Prob(x = a)

It satisfies the properties of a probability mass function

e p’(a) >0forallacV

e > p'la)=1

acV

because the events 27 !(a) partition €2, so

pr(a) = ZProb(x_l(a)) =1

acV acV
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Example: sum of two dice

The induced pdf is below
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Random variables

Another name for a random variable is a change of variables

), p

6r © © ©6 O O O

The map x induces the pmf p* on V
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Example: sum of two dice

So there are two ways to compute, for example, Prob(z =4 or x = 5)

e There are seven corresponding outcomes w in €2, each with probability 1/36.

Prob(x =4 or x = 5) :Prob({w € Q| x(w)=14orxw) :5})

e Or alternatively: Prob(z =4 or x = 5) = p*(4) + p“(5)
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Example: sum of two dice

Another example: suppose we want to compute

Prob((z — 6)° = 16)

e By definition

Prob((z — 6)* = 16) = Prob({w € 0 | (z(w) - 6)* =16 })

e Or using the induced pmf
Prob((z — 6)* => P
acC

where

C:{a€V|(a—6)2:16}
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Example: sum of two dice
We can also do this another way: let f : R — R be
f(z)=(z —6)°
and define the random variable y = f(x), which means y(w) = f(z(w))

Then
Prob(y = 16) = p?(16)
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Example: functions of a random variable

e Suppose 2 ={1,2,3,4,5} and p is as shown T T
plw) oz
1 2 w3 4 5
e The random variable x : {2 - R is
(1 fwu=Tlorw=2 ol i
r(w)=1<1 ifw=3o0orw=14 p*(a) odf i
2 if w=2>5 ol
\ |
-1 a 1 2
e The random variable y = 22, meaning Zj:
p!(b) |
y(w) = z(w)? forallw e 02}
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Functions of a random variable

e 1 is a random variable 2 : ) -V

e y is a function of z, thatis f : V — U and y = f(x)

Then y defines a random variable y(w) = f(x(w)). The induced pmf of y is

p’(b) = Z p

acV |y(a)
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Functions of a random variable

Because
o)=Y pw)

weQ | y(z(w))=b
= D > W)
acV|y(a)=b weQ|z(w)=a

6l © ©

5{ @ ©

4t © o

3o o

2l 0 o

11(e)" o

2
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Induced sample spaces

We've seen two ways to compute Prob(y = b)

e As a sum over the sample space ()

Prob(y = b)

]
M

g
£

e As a sum over the set V/

Prob(y =b) = Z p

acV |y(a)

Hence we can think of V' as a new sample space, called the induced sample space, with
pmf p*: V — [0, 1]

We can compute probabilities of functions of x without knowing the original sample space
() and the pmf p.
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The cumulative distribution

Suppose z : {2 — R is a real-valued random variable; for example

0.4 : : ~

0.3} o
“(a)
P {a) o,f

0.1} T

0

0 1 2 3 4 5

a

The cumulative distribution (cdf) of x is a function F': R — R given by

F(a) =Prob(z < a)

e ['is piecewise constant Fa)  —

e [ is right continuous O L ]
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The uniform random variable

In many codes, one has access to a uniform random number generator.

The key property is, for 0 < a <b <1

Prob(u € |a,b]) =b—a

e [n Matlab this is u=rand; not randn.

e More on continuous random variables later. . .
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Simulation of random variables

Suppose 7 : {2 — R is a random variable with cdf F

Define the function g : R — R as below (it's almost the inverse of F')

S) 1 1 1 1
I — ‘ ‘ ‘
] S e
0.87 q(b) ‘
0.6F i RERERE FRE 2 ——e
QA i |
F(a) — e ]
1] R AXAsTEREREERTERY
O 0 0 . .
o 1 2 3 4 5 0 02 04 06 08 1
a b

If w0 is uniform, then

Prob(g(u) = a) = Prob(z = a)

and so one can simulate x by setting x = g(u).
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Expectation

Suppose z : {2 — R is a real-valued random variable. The expectation of x is

Ex = Z z(w)p(w)

weld

e Also called the mean of x or the expected value of x
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Example: expectation

Suppose €2 = {1,2,3,4,5}, and p is plotted . | T
0.3 'O
p(w) o2 |
Let random variable = : {2 — R be 0 T I I yR—
w

(1 ifa=1lora=2
z(a)=4q¢1 fa=3ora=4
| 2 ifa=>5

The expectation is Ez=-01-0.1540.14+0.25+2(04) =0.9
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Vector spaces

The set of real-valued random variables is a vector space.

Because if x and y are two random variables, so is Az + uy.

e Suppose §) = {(.4)1,0)2, . ,wn}
e Suppose = : {2 — R is a random variable.
e Define the vector » € R" by

ri=x(w;) foralli=1,... n

Usually we abuse notation and use x to denote both the vector » € R" and the random
variable z : ) — R.
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Vector spaces

We can also represent the pmf p : 2 — [0, 1] by a vector.

Define the vector p € R" (again abusing notation) by

pi=plw;) foralli=1,...,n

e The vector p defines a pmf if and only if 17p =1 and p > 0, where

e p>0Omeansp; >0foralli=1,....n

e 1 is the vector of all ones

e A vector p satisfying these conditions is called a distribution vector
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Expectation and vector representations

It's easy to compute the expected value of the random variable .

Because

Hence expectation is linear

Ex=7plz

Ez=>) z(w)pw)

weld

n
= E LiPi
i=1

E(ax + py)=aExz+ GEy

S. Lall, Stanford 2011.01.04.01
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Example: expectation

Suppose €2 = {1,2,3,4,5}, and p is plotted o | T
0.3} | | | 'O
) naf
__1_ i 01 ] ° T I I 4 5
—1 0.15 v
The random variable x = 1| andp=]0.1
1 0.25
2 0.4

The expectation is Erx=p'z=-01-015+0.1+0.25+2(0.4) = 0.9
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Another way to compute expectation

Suppose x : ) — V and V C R. The expectation of x is also given by

Ex = Z ap”(a)

acV

e.g., the random variable z : {2 — R has | Q
induced pmf as shown. o |

So the expectation is
Exr=-025+0.35+2(04)=0.9
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Another way to compute expectation

Because

> twplw) =) Z )

weld acV  we, x(w

Again there are two ways to compute

Ex = Z z(w)p(w)

wes

e summing over §)

e summing over V

Ex = Z ap”’(a)

acV

S. Lall, Stanford 2011.01.04.01
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Interpreting the mean

The mean is

Ex = Z ap”’(a)

aceR

e We interpret the mean as the center of mass of the distribution

e The plot below shows the induced pmf of x

0.25
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Variance

Suppose 7 : {2 — R is a random variable. The covariance of x is

cov(r) = E((az — Eaz)2>

e Measures the mean square deviation from the mean

e Another common notation: the standard deviation is

std(x) = v/cov(x)

e [he covariance is also called the variance
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Intepreting the covariance

The following are the induced pmfs of two random variables

0.15f - Qo o 0.15f AEEREIR R S -

2,
—o
1
/

0 10 20 30 0 10 20 30

Standard deviations are std(x) = 3.5 and std(y) = 6.5.

e The covariance gives a measure of how wide the range of values of a random variable
extends around the mean.

e A small covariance means that the pmf is concentrated around the mean
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Variance

We have the variance is

cov(z) = E((x _ Ex)Q)

What this means is:

e Let 1 € R be the expected value of z; i.e.,, u = Ex.
e Define a new random variable y : {2 — R by

y(w) = (z(w) —p)*  forallw e
e Then cov(z) =Ey

e Several ways to compute this: by summing over €2, or summing over the values of z,
or summing over the values of ¥y
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Example: variance

Suppose €2 = {1,2,3,4,5} and p is below.

p(w)

0.1}

3 fw=1lorw=2

The random variable x is z(w) = ¢4 fw =3

6 fw=40rw=2>5

Hence E z = 4, and the random variable y = (x — Ex)? is

y(w) =

Hence cov(z) = E(y) = 1.5

\

(3—4)? fw=1orw=2
(4—4)* fw=3

(6—4)* fw=4orw=5

\
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Mean-variance decomposition

The mean square of x is E(z?). We have

E(2?) = (Ex)* + cov(z)

Called the mean-variance decomposition.

Easy to see; for convenience let = E x. Then
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Moments of a random variable

Suppose z : {2 — R is a random variable. The n'th moment of x is

E(z") =) w(w)"pw)

wesl)

e [he mean E z is the first moment of &

e The covariance is the second moment minus the square of the first moment.



