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3 - Random Variables

• Estimation

• Example: radar

• Example: communication channel

• Example: force on mass

• Events corresponding to random variables

• Induced probability

• Functions of a random variable

• Cumulative distribution

• Simulation of random variables

• Expectation

• The vector space of random variables

• Variance and its interpretation

• The mean-variance decomposition
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Random variables

Suppose Ω is a finite sample space, with pmf p

A function x : Ω → V is called a random variable.

• The set V can be any set; it is the set of values of x.

• Often V is R
n or just R; then x is called a random vector
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Random variables and models

We model systems using random variables.

• Ω is a sample space. Exactly one outcome ω ∈ Ω occurs.

• We have a measurement random vector y : Ω → R
n.

• We have a hypothesis random vector x : Ω → R
n

Estimation

• We measure y(ω)

• We would like to estimate x(ω)
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Example: radar system

A radar system sends out n pulses, and receives y reflections, where 0 ≤ y ≤ n.

Ideally, y = n if an aircraft is present, and y = 0 otherwise.

In practice, reflections may be lost, or noise may be mistaken for reflections.

The set of outcomes is

Ω =
{

(x, y) | x ∈ {0, 1} and y ∈ {0, 1, . . . , n}
}

Here

• x = 1 if an aircraft is present, x = 0 otherwise

• y is the number of reflection pulses received

We measure y, and would like to determine x.
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Example: communication channel

• A symbol x ∈ {0, 1, . . . , n − 1} is sent.

• The channel is noisy, so the symbol received
may not match what is sent.

• The symbol y ∈ {0, 1, . . . , n−1} is received.

The set of outcomes is

Ω =
{

(x, y)
∣

∣ x ∈ {0, 1, . . . , n − 1} and y ∈ {0, 1, . . . , n − 1}
}

We measure y, and would like to determine x.
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Example: force on mass

Mass acted on by forces

• known sequence of forces u1, u2, . . . , un

• additional random force disturbance r1, r2, . . . , rn

• we make a noisy measurement y = v + position at time n/2

where v is random noise

• we’d like to estimate or predict the position x at time n

The set of outcomes is Ω = R
n+1, where ω =

[

v
r

]

We have linear equations

y = A(u + r) + v

x = P (u + r)
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Estimation

We would like to design estimators.

Performance measures include

• the probability that the estimate is correct

• the mean size of the error, in some sense

• the bias of the estimator

• continuous problems: are estimates on average too low or too high?

• discrete problems: what are the probabilities of false positives or false negatives?
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Random variables

We have

• sample space Ω, a finite set

• probability mass function p : Ω → [0, 1]

• a random variable x : Ω → R

Suppose a ∈ R. The probability that x = a is defined as

Prob

(

{

ω ∈ Ω | x(ω) = a
}

)

This is equal to
∑

ω∈Ω | x(ω)=a

p(ω)
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Example: two dice

We have sample space

Ω =
{

(ω1, ω2) ∈ Ω | ωi ∈ {1, 2, . . . , 6}
}

Define the random variable x : Ω → R, the sum of the two dice by

x(ω1, ω2) = ω1 + ω2

Then Prob(x = 5) = Prob(A) where the
event A is

A =
{

ω ∈ Ω | x(ω) = 5
}
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Probability and random variables

The probability of the event that x = a is written Prob(x = a), i.e.,

Prob(x = a) = Prob

(

{

ω ∈ Ω | x(ω) = a
}

)

Suppose Ω = {1, 2, 3, 4, 5} and p is as shown

The random variable x : Ω → R is

x(ω) =











−1 if ω = 1 or ω = 2

1 if ω = 3 or ω = 4

2 if ω = 5

and Prob(x = a) is shown.
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Notations used for random variables

• The event that x = a is written

x−1(a) =
{

ω ∈ Ω | x(ω) = a
}

• The probability of this event is written as Prob(x = a)

• This is also written px(a) = Prob(x = a)
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Notation for random variables

There are many similar notations used: for example, define

• Prob(x = a) = Prob
(

x−1(a)
)

• Prob(x ≥ a) = Prob
({

ω ∈ Ω | x(ω) ≥ a
})

• If C ⊂ V , then Prob(x ∈ C) = Prob
({

ω ∈ Ω | x(ω) ∈ C
})
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Events corresponding to random variables

Suppose x : Ω → V . Each a ∈ V defines an event

x−1(a) =
{

ω ∈ Ω | x(ω) = a
}

These events partition Ω

For example, if Ω = {1, 2, 3, 4, 5} and the random variable x is

x(ω) =











−1 if ω = 1 or ω = 2

1 if ω = 3 or ω = 4

2 if ω = 5

The events associated with x are

x−1(−1) = {1, 2} x−1(1) = {3, 4} x−1(2) = {5}
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Example: sum of two dice

The events are
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Induced probability

Suppose x : Ω → V . The induced pmf of x is the function px : V → [0, 1]

px(a) = Prob(x = a)

It satisfies the properties of a probability mass function

• px(a) ≥ 0 for all a ∈ V

•
∑

a∈V

px(a) = 1

because the events x−1(a) partition Ω, so

∑

a∈V

px(a) =
∑

a∈V

Prob
(

x−1(a)
)

= 1
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Example: sum of two dice

The induced pdf is below
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Random variables

Another name for a random variable is a change of variables
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The map x induces the pmf px on V
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Example: sum of two dice

So there are two ways to compute, for example, Prob(x = 4 or x = 5)

• There are seven corresponding outcomes ω in Ω, each with probability 1/36.

Prob(x = 4 or x = 5) = Prob

(

{

ω ∈ Ω | x(ω) = 4 or x(ω) = 5
}

)

• Or alternatively: Prob(x = 4 or x = 5) = px(4) + px(5)
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V, pxΩ, p
x
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Example: sum of two dice

Another example: suppose we want to compute

Prob
(

(x − 6)2 = 16
)

• By definition

Prob
(

(x − 6)2 = 16
)

= Prob

(

{

ω ∈ Ω |
(

x(ω) − 6
)2

= 16
}

)

• Or using the induced pmf

Prob
(

(x − 6)2 = 16
)

=
∑

a∈C

px(a)

where
C =

{

a ∈ V | (a − 6)2 = 16
}
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Example: sum of two dice

We can also do this another way: let f : R → R be

f (x) = (x − 6)2

and define the random variable y = f (x), which means y(ω) = f (x(ω))

Then
Prob(y = 16) = py(16)
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Example: functions of a random variable

• Suppose Ω = {1, 2, 3, 4, 5} and p is as shown

• The random variable x : Ω → R is

x(ω) =











−1 if ω = 1 or ω = 2

1 if ω = 3 or ω = 4

2 if ω = 5

• The random variable y = x2, meaning

y(ω) = x(ω)2 for all ω ∈ Ω
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Functions of a random variable

• x is a random variable x : Ω → V

• y is a function of x, that is f : V → U and y = f (x)

Then y defines a random variable y(ω) = f
(

x(ω)
)

. The induced pmf of y is

py(b) =
∑

a∈V | y(a)=b

px(a)
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Functions of a random variable

Because

py(b) =
∑

ω∈Ω | y(x(w))=b

p(ω)

=
∑

a∈V | y(a)=b

∑

ω∈Ω |x(ω)=a

p(ω)

=
∑

a∈V | y(a)=b

px(a)

V, px

Ω, p

U, py

x
−→

f
−→
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Induced sample spaces

We’ve seen two ways to compute Prob(y = b)

• As a sum over the sample space Ω

Prob(y = b) =
∑

ω∈Ω | y(x(w))=b

p(ω)

• As a sum over the set V

Prob(y = b) =
∑

a∈V | y(a)=b

px(a)

Hence we can think of V as a new sample space, called the induced sample space, with
pmf px : V → [0, 1]

We can compute probabilities of functions of x without knowing the original sample space
Ω and the pmf p.
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The cumulative distribution

Suppose x : Ω → R is a real-valued random variable; for example
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The cumulative distribution (cdf) of x is a function F : R → R given by

F (a) = Prob(x ≤ a)

• F is piecewise constant

• F is right continuous
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The uniform random variable

In many codes, one has access to a uniform random number generator.

The key property is, for 0 ≤ a ≤ b ≤ 1

Prob(u ∈ [a, b]) = b − a

• In Matlab this is u=rand; not randn.

• More on continuous random variables later. . .
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Simulation of random variables

Suppose x : Ω → R is a random variable with cdf F

Define the function g : R → R as below (it’s almost the inverse of F )
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If u is uniform, then

Prob
(

g(u) = a
)

= Prob(x = a)

and so one can simulate x by setting x = g(u).
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Expectation

Suppose x : Ω → R is a real-valued random variable. The expectation of x is

E x =
∑

ω∈Ω

x(ω)p(ω)

• Also called the mean of x or the expected value of x
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Example: expectation

Suppose Ω = {1, 2, 3, 4, 5}, and p is plotted

Let random variable x : Ω → R be

x(a) =











−1 if a = 1 or a = 2

1 if a = 3 or a = 4

2 if a = 5

The expectation is E x = −0.1 − 0.15 + 0.1 + 0.25 + 2(0.4) = 0.9
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Vector spaces

The set of real-valued random variables is a vector space.

Because if x and y are two random variables, so is λx + µy.

• Suppose Ω =
{

ω1, ω2, . . . , ωn

}

• Suppose x : Ω → R is a random variable.

• Define the vector r ∈ R
n by

ri = x(ωi) for all i = 1, . . . , n

Usually we abuse notation and use x to denote both the vector r ∈ R
n and the random

variable x : Ω → R.
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Vector spaces

We can also represent the pmf p : Ω → [0, 1] by a vector.

Define the vector p ∈ R
n (again abusing notation) by

pi = p(ωi) for all i = 1, . . . , n

• The vector p defines a pmf if and only if 1
Tp = 1 and p º 0, where

• p º 0 means pi ≥ 0 for all i = 1, . . . , n

• 1 is the vector of all ones

• A vector p satisfying these conditions is called a distribution vector
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Expectation and vector representations

It’s easy to compute the expected value of the random variable x.

E x = pTx

Because

E x =
∑

ω∈Ω

x(ω)p(ω)

=

n
∑

i=1

xipi

Hence expectation is linear

E(αx + βy) = αE x + β E y
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Example: expectation

Suppose Ω = {1, 2, 3, 4, 5}, and p is plotted

The random variable x =
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The expectation is E x = pTx = −0.1 − 0.15 + 0.1 + 0.25 + 2(0.4) = 0.9



−1 1 2
0

0.1

0.2

0.3

0.4

px(a)

a

3 - 34 Probability on Finite Sets S. Lall, Stanford 2011.01.04.01

Another way to compute expectation

Suppose x : Ω → V and V ⊂ R. The expectation of x is also given by

E x =
∑

a∈V

apx(a)

e.g., the random variable x : Ω → R has
induced pmf as shown.

So the expectation is
E x = −0.25 + 0.35 + 2(0.4) = 0.9
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Another way to compute expectation

Because
∑

ω∈Ω

x(ω)p(ω) =
∑

a∈V

∑

ω∈Ω, x(ω)=a

x(ω)p(ω)

=
∑

a∈V

a
∑

ω∈Ω, x(ω)=a

p(ω)

=
∑

a∈V

apx(a)

Again there are two ways to compute

• summing over Ω

E x =
∑

ω∈Ω

x(ω)p(ω)

• summing over V

E x =
∑

a∈V

apx(a)
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Interpreting the mean

The mean is

E x =
∑

a∈R

apx(a)

• We interpret the mean as the center of mass of the distribution

• The plot below shows the induced pmf of x
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Variance

Suppose x : Ω → R is a random variable. The covariance of x is

cov(x) = E

(

(x − E x)2
)

• Measures the mean square deviation from the mean

• Another common notation: the standard deviation is

std(x) =
√

cov(x)

• The covariance is also called the variance
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Intepreting the covariance

The following are the induced pmfs of two random variables
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Standard deviations are std(x) = 3.5 and std(y) = 6.5.

• The covariance gives a measure of how wide the range of values of a random variable
extends around the mean.

• A small covariance means that the pmf is concentrated around the mean
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Variance

We have the variance is

cov(x) = E

(

(x − E x)2
)

What this means is:

• Let µ ∈ R be the expected value of x; i.e., µ = E x.

• Define a new random variable y : Ω → R by

y(ω) = (x(ω) − µ)2 for all ω ∈ Ω

• Then cov(x) = E y

• Several ways to compute this: by summing over Ω, or summing over the values of x,
or summing over the values of y
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Example: variance

Suppose Ω = {1, 2, 3, 4, 5} and p is below.
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ω

The random variable x is x(ω) =











3 if ω = 1 or ω = 2

4 if ω = 3

6 if ω = 4 or ω = 5

Hence E x = 4, and the random variable y = (x − Ex)2 is

y(ω) =











(3 − 4)2 if ω = 1 or ω = 2

(4 − 4)2 if ω = 3

(6 − 4)2 if ω = 4 or ω = 5

Hence cov(x) = E(y) = 1.5
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Mean-variance decomposition

The mean square of x is E(x2). We have

E(x2) = (E x)2 + cov(x)

Called the mean-variance decomposition.

Easy to see; for convenience let µ = E x. Then

cov(x) = E
(

(x − µ)2
)

= E
(

x2 − 2µx + µ2
)

= E
(

x2
)

− 2µE x + µ2

= E
(

x2
)

− µ2
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Moments of a random variable

Suppose x : Ω → R is a random variable. The n’th moment of x is

E(xn) =
∑

ω∈Ω

x(ω)np(ω)

• The mean Ex is the first moment of x

• The covariance is the second moment minus the square of the first moment.


