5 - Random vectors

- The joint probability matrix
- Marginal random variables
- Independent random variables
- The conditional pmf
- Example: four dice
- Example: dependent events
- Covariance and correlation
- Affine transformations of random vectors
- Sum of two independent random variables
- IID random variables
- Law of large numbers
- Estimating the mean
- Identifying a pmf from data

Random vectors

A random vector $x: \Omega \rightarrow \mathbb{R}^{n}$ is a random variable whose values are vectors.

$$
x(\omega)=\left[\begin{array}{c}
x_{1}(\omega) \\
x_{2}(\omega) \\
\vdots \\
x_{n}(\omega)
\end{array}\right]
$$

- Equivalently, we have n real-valued random variables x_{1}, \ldots, x_{n}, called marginal random variables
- The induced $\operatorname{pmf} p^{x}: \mathbb{R}^{n} \rightarrow[0,1]$ is defined by

$$
p^{x}(a)=\operatorname{Prob}(\{\omega \in \Omega \mid x(\omega)=a\})
$$

also called the joint pmf

Finite sample spaces

Suppose Ω is finite and $x: \Omega \rightarrow \mathbb{R}^{2}$. Then x_{1} and x_{2} only take a finite set of values.

$$
x_{1}: \Omega \rightarrow\left\{u_{1}, \ldots, u_{m}\right\} \quad x_{2}: \Omega \rightarrow\left\{v_{1}, \ldots, v_{n}\right\}
$$

So we can represent the induced pmf by a matrix

$$
J_{i j}=p^{x}\left(\left[\begin{array}{l}
u_{i} \\
v_{j}
\end{array}\right]\right)
$$

J is called the joint probability matrix

Marginal random variables

Suppose $x: \Omega \rightarrow \mathbb{R}^{2}$.
The marginal random variables are the components x_{1} and x_{2} of x.

The pmf of x_{1} is

$$
p^{x_{1}}\left(u_{i}\right)=\operatorname{Prob}\left(x_{1}=u_{i}\right)=\operatorname{Prob}\left(\left\{\omega \in \Omega \mid x_{1}(\omega)=u_{i}\right\}\right)=\sum_{j=1}^{n} J_{i j}
$$

So $p^{x_{1}}=J 1$ and similarly $p^{x_{2}}=J^{T} 1$
$p^{x_{1}}$ and $p^{x_{2}}$ are called the marginal $p m f s$ of J

Independent random variables

If $x_{1}: \Omega \rightarrow U$ and $x_{2}: \Omega \rightarrow V$ are random variables, they are called independent if, for all $a \in U$ and $b \in V$,

$$
\operatorname{Prob}\left(x_{1}=a \text { and } x_{2}=b\right)=\operatorname{Prob}\left(x_{1}=a\right) \operatorname{Prob}\left(x_{2}=b\right)
$$

Hence x_{1} and x_{2} are independent if and only if

$$
J_{i j}=p_{i}^{x_{1}} p_{j}^{x_{2}}
$$

because

$$
\begin{aligned}
J_{i j} & =\operatorname{Prob}\left(x_{1}=u_{i} \text { and } x_{2}=v_{j}\right) \\
& =\operatorname{Prob}\left(x_{1}=u_{i}\right) \operatorname{Prob}\left(x_{2}=v_{j}\right) \\
& =p_{i}^{x_{1}} p_{j}^{x_{2}}
\end{aligned}
$$

the random variables x_{1} and x_{2} are independent if and only if $\operatorname{rank}(J)=1$.

Independent random variables

We often have problems where

- $x_{1}: \Omega \rightarrow\{1, \ldots, m\}$ is a random variable
- $x_{2}: \Omega \rightarrow\{1, \ldots, n\}$ is a random variable
- x_{1} and x_{2} are independent

Here we construct the sample space

$$
V=\{(i, j) \mid i \in\{1, \ldots, m\} \text { and } j \in\{1, \ldots, n\}\}
$$

with pmf

$$
p^{x}(i, j)=p^{x_{1}}(i) p^{x_{2}}(j)
$$

The conditional pmf

Suppose $x: \Omega \rightarrow \mathbb{R}^{2}$ is a random vector with induced pmf $p^{x}: \mathbb{R}^{2} \rightarrow[0,1]$.
Consider the conditional probability

$$
\begin{aligned}
\operatorname{Prob}\left(x_{1}=a \mid x_{2}=b\right) & =\operatorname{Prob}\left(\left\{\omega \in \Omega \mid x_{1}(\omega)=a\right\} \mid\left\{\omega \in \Omega \mid x_{2}(\omega)=b\right\}\right) \\
& =\frac{\operatorname{Prob}(\{\omega \in \Omega \mid x(\omega)=(a, b)\})}{\operatorname{Prob}\left(\left\{\omega \in \Omega \mid x_{2}(\omega)=b\right\}\right)} \\
& =\frac{p^{x}(a, b)}{p^{x_{2}}(b)}
\end{aligned}
$$

- Called the conditional pmf of x_{1} given x_{2}
- Often written $p^{\mid x_{2}}(a, b)$

Example: four dice

Four dice, sample space $\Omega=\left\{\omega \in \mathbb{R}^{4} \mid \omega_{i} \in\{1,2, \ldots, 6\}\right\}$

- $x: \Omega \rightarrow \mathbb{R}$ is the sum of the first two dice

$$
x=\omega_{1}+\omega_{2}
$$

- $y: \Omega \rightarrow \mathbb{R}$ is the sum of all four dice

$$
y=\omega_{1}+\omega_{2}+\omega_{3}+\omega_{4}
$$

The induced pmf of $\left[\begin{array}{l}x \\ y\end{array}\right]$ is

$$
p^{x, y}(a, b)=\sum_{w \in \Omega \mid x(\omega)=a \text { and } y(\omega)=b} p(\omega)
$$

Example: marginal pmf

- The induced pmf of x is given by

$$
p^{x}(a)=\operatorname{Prob}(x=a)
$$

- We can compute this from the induced pmf of $\left[\begin{array}{l}x \\ y\end{array}\right]$ since

$$
p^{x}(a)=\sum_{b=1}^{24} p^{x, y}(a, b)
$$

- Also called the prior pmf of x, since it is the information we have about x before any measurements.

Example: conditional pmf

- Suppose we measure $y_{\text {meas }}=19$
- The conditional pmf of x given $y=y_{\text {meas }}$ is shown.

$$
p^{\mid y}(a, 19)
$$

Example: dependent events

The above dice problem is a simple version of the following.

Here

- We would like to determine an estimate $x_{\text {est }}$ of x, with 'good' properties
- We know a pmf for x (possibly obtained from previous measurements)
- w is random noise
- $y=A x+w$ is measured

Since y and x are dependent, by measuring y we discover information about x

Covariance

Suppose $x: \Omega \rightarrow \mathbb{R}^{n}$. Let $\mu=\mathbf{E} x$ be the mean of x.
Define the covariance of x by

$$
\operatorname{cov}(x)=\mathbf{E}\left((x-\mu)(x-\mu)^{T}\right)
$$

- We'll often denote the covariance by $\Sigma=\operatorname{cov}(x)$
- Σ is symmetric and positive semidefinite because

$$
\Sigma=\sum_{\omega \in \Omega}(x(\omega)-\mu)(x(\omega)-\mu)^{T} p(\omega)
$$

- $\Sigma_{i i}$ is the covariance of the i 'th component x_{i}

$$
\Sigma_{i i}=\operatorname{cov}\left(x_{i}\right)
$$

Correlation

Let $\Sigma=\boldsymbol{\operatorname { c o v }}(x)$. The correlation coefficient of x_{i} and x_{j} is

$$
\rho_{i j}=\frac{\Sigma_{i j}}{\sqrt{\Sigma_{i i} \Sigma_{j j}}}
$$

- Since $\Sigma \geq 0$, we have $\left|\rho_{i j}\right| \leq 1$
- If $\rho_{i j}=0$ then x_{i} and x_{j} are called uncorrelated.

Product of expectations

Suppose $x: \Omega \rightarrow \mathbb{R}^{2}$ is a 2-dimensional random variable and x_{1} and x_{2} are independent. Then

$$
\mathbf{E}\left(x_{1} x_{2}\right)=\mathbf{E}\left(x_{1}\right) \mathbf{E}\left(x_{2}\right)
$$

To see this, suppose $x: \Omega \rightarrow\left\{u_{1}, \ldots, u_{m}\right\} \times\left\{v_{1}, \ldots, v_{n}\right\}$, then

$$
\begin{aligned}
\mathbf{E}\left(x_{1} x_{2}\right) & =\sum_{i=1}^{m} \sum_{j=1}^{n} p^{x}\left(u_{i}, v_{j}\right) u_{i} v_{j} \\
& =\sum_{i=1}^{m} \sum_{j=1}^{n} p_{i}^{x_{1}} p_{j}^{x_{2}} u_{i} v_{j} \\
& =\left(\sum_{i=1}^{m} p_{i}^{x_{1}} u_{i}\right)\left(\sum_{j=1}^{n} p_{j}^{x_{2}} v_{j}\right) \\
& =\mathbf{E}\left(x_{1}\right) \mathbf{E}\left(x_{2}\right)
\end{aligned}
$$

Correlation and independence

Hence

$$
\text { if } x_{i} \text { and } x_{j} \text { are independent, then they are uncorrelated }
$$

Because if x_{i} and x_{j} are independent, then $\Sigma_{i j}=0$, since

$$
\begin{aligned}
\Sigma_{i j} & =\mathbf{E}\left(x_{i}-\mu_{i}\right)\left(x_{j}-\mu_{j}\right) \\
& =\mathbf{E}\left(x_{i}-\mu_{i}\right) \mathbf{E}\left(x_{j}-\mu_{j}\right) \\
& =0
\end{aligned}
$$

- The converse is not true
- If $x: \Omega \rightarrow \mathbb{R}^{n}$, and for all i, j the random variables x_{i} and x_{j} are pairwise independent, then $\operatorname{cov}(x)$ is diagonal

Affine transformations of random vectors

Suppose $x: \Omega \rightarrow \mathbb{R}^{n}$ is a random variable, and $A \in \mathbb{R}^{m \times n}$. Let $y=A x+b$. Then

- The mean of y is the same affine function of the mean of x

$$
\mathbf{E} y=A \mathbf{E} x+b
$$

- The covariance of y is a linear function of the covariance of x

$$
\operatorname{cov}(y)=A \operatorname{cov}(x) A^{T}
$$

These two facts will be very important in estimation for linear systems

Affine transformations of random vectors

For the mean, we have

$$
\begin{aligned}
\mathbf{E} y & =\mathbf{E}(A x+b) \\
& =\sum_{\omega \in \Omega}(A x(\omega)+b) p(\omega) \\
& =b+A \sum_{\omega \in \Omega} x(\omega) p(\omega) \\
& =b+A \mathbf{E} x
\end{aligned}
$$

And for the covariance

$$
\begin{aligned}
\operatorname{cov}(y) & =\mathbf{E}\left((y-\mathbf{E} y)(y-\mathbf{E} y)^{T}\right) \\
& =\mathbf{E}\left(A(x-\mathbf{E} x)(x-\mathbf{E} x)^{T} A^{T}\right) \\
& =A \mathbf{E}\left((x-\mathbf{E} x)(x-\mathbf{E} x)^{T}\right) A^{T} \\
& =A \operatorname{cov}(x) A^{T}
\end{aligned}
$$

Sum of two independent random variables

Suppose x and y are independent random variables which take integer values

- $x: \Omega \rightarrow\{0,1, \ldots, m\}$
- $y: \Omega \rightarrow\{0,1, \ldots, n\}$

Define the random variable $z: \Omega \rightarrow\{0, \ldots, m+n\}$ by

$$
z=x+y
$$

The induced pmf of z is the convolution of p^{x} and p^{y}.

$$
p_{k}^{z}=\sum_{i=0}^{k} p_{i}^{x} p_{k-i}^{y}
$$

Sum of two independent random variables

The proof is as follows.

$$
\begin{aligned}
p_{k}^{z} & =\operatorname{Prob}(z=k) \\
& =\sum\{\operatorname{Prob}(x=i \text { and } y=j) \mid i+j=k\} \\
& =\sum\left\{p_{i}^{x} p_{j}^{y} \mid i+j=k\right\} \\
& =\sum_{i=0}^{k} p_{i}^{x} p_{k-i}^{y}
\end{aligned}
$$

IID random variables

Suppose x_{1}, \ldots, x_{n} are random variables, with $x_{i}: \Omega \rightarrow \mathbb{R}^{m}$

- They are called identically distributed if each x_{i} has the same pmf.
- If they are also independent, they are called IID.

Suppose x_{1}, \ldots, x_{n} are IID, each with mean v and covariance Q. Let $x=\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right]$, then the mean and covariance of x is

$$
\mathbf{E} x=\left[\begin{array}{c}
v \\
v \\
\vdots \\
v
\end{array}\right] \quad \operatorname{cov}(x)=\left[\begin{array}{llll}
Q & & & \\
& Q & & \\
& & \ddots & \\
& & & Q
\end{array}\right]
$$

IID random variables

Define the average $s_{n}: \Omega \rightarrow \mathbb{R}^{m}$

$$
s_{n}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

We have $s_{n}=A x$ where $A=\frac{1}{n}\left[\begin{array}{llll}I & I & \ldots & I\end{array}\right]$, so its mean is

$$
\mathbf{E} s_{n}=A \mathbf{E} x=A\left[\begin{array}{c}
v \\
v \\
\vdots \\
v
\end{array}\right]=v
$$

and its covariance is

$$
\operatorname{cov}\left(s_{n}\right)=A \operatorname{cov}(x) A^{T}=A\left[\begin{array}{llll}
Q & & & \\
& Q & & \\
& & \ddots & \\
& & & \\
& & &
\end{array}\right] A^{T}=\frac{Q}{n}
$$

so taking the average of n IID random variables reduces the covariance by a factor of n

Example: sums of IID random variables

The pmf of s_{n} for various values of n

Law of large numbers

Suppose $x_{i}: \Omega \rightarrow \mathbb{R}$ are real-valued and IID, each with mean v and variance Q. The (weak) law of large numbers is

$$
\lim _{n \rightarrow \infty} \operatorname{Prob}\left(\left|s_{n}-v\right| \leq \varepsilon\right)=1
$$

Proof is just from the the Chebyshev inequality

$$
\operatorname{Prob}\left(\left|s_{n}-v\right| \leq \varepsilon\right) \geq 1-\frac{Q}{n \varepsilon^{2}}
$$

- Here s_{n} is the average of n IID random variables.
- The law of large numbers says that the probability that s_{n} is within ε of the mean tends to 1 as n becomes large.
- We say the sequence of random variables s_{0}, s_{1}, \ldots converges in probability to v.

Law of large numbers

We have the Chebyshev inequality

$$
\operatorname{Prob}\left(\left|s_{n}-v\right| \leq \varepsilon\right) \geq 1-\frac{Q}{n \varepsilon^{2}}
$$

Hence to achieve confidence width of ε at probability $p_{\text {conf, }}$ we need

$$
\varepsilon=\sqrt{\frac{Q}{n\left(1-p_{\mathrm{conf}}\right)}}
$$

i.e., the confidence width decreases as $\frac{1}{\sqrt{n}}$.

Estimating the mean

If we perform identical repeated experiments, then for large n the sample mean

$$
s_{n}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

will be close to the true mean with high probability.

Hence we can use this to estimate the mean of random data.

Identifying a pmf from data

We have random samples x_{1}, x_{2}, \ldots of $x: \Omega \rightarrow V$, and we would like to estimate p^{x}

- Define the indicator random variable $I_{j}: V \rightarrow \mathbb{R}$ by

$$
I_{a}(y)= \begin{cases}1 & \text { if } y=a \\ 0 & \text { otherwise }\end{cases}
$$

The expected value of I_{a} is

$$
\mathbf{E} I_{a}=\sum_{b \in V} p^{x}(b) I_{a}(b)=p^{x}(a)
$$

- So to estimate $p^{x}(a)$, we compute the sample mean

$$
s(a, n)=\frac{1}{n} \sum_{i=1}^{n} I_{a}\left(x_{i}\right)
$$

which is exactly the relative frequency of outcome $x=a$ in n trials.

Example: identifying a pmf

We have the pmf

Simulating gives relative frequencies $s(a, k)$ plotted against k for different a

Example: identifying a pmf

The graph shows the relative frequency $s(n, 1)$ and its confidence intervals

The orange curves give the 90% confidence interval

$$
s(a, k) \pm \sqrt{\frac{\operatorname{cov}\left(I_{a}\right)}{k\left(1-p_{\text {conf }}\right)}}
$$

