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Random vectors

A random vector x : Ω → R
n is a random variable whose values are vectors.

x(ω) =









x1(ω)
x2(ω)

...
xn(ω)









• Equivalently, we have n real-valued random variables x1, . . . , xn,

called marginal random variables

• The induced pmf px : R
n → [0, 1] is defined by

px(a) = Prob

(

{

ω ∈ Ω | x(ω) = a
}

)

also called the joint pmf
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Finite sample spaces

Suppose Ω is finite and x : Ω → R
2. Then x1 and x2 only take a finite set of values.

x1 : Ω → {u1, . . . , um} x2 : Ω → {v1, . . . , vn}

So we can represent the induced pmf by a matrix

Jij = px

([

ui

vj

])

J is called the joint probability matrix
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Marginal random variables

Suppose x : Ω → R
2.

The marginal random variables are the components x1 and x2 of x.

The pmf of x1 is

px1(ui) = Prob(x1 = ui) = Prob
(

{ω ∈ Ω | x1(ω) = ui }
)

=

n
∑

j=1

Jij

So px1 = J1 and similarly px2 = JT
1

px1 and px2 are called the marginal pmfs of J
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Independent random variables

If x1 : Ω → U and x2 : Ω → V are random variables, they are called independent if, for
all a ∈ U and b ∈ V ,

Prob(x1 = a and x2 = b) = Prob(x1 = a)Prob(x2 = b)

Hence x1 and x2 are independent if and only if

Jij = p
x1
i p

x2
j

because

Jij = Prob(x1 = ui and x2 = vj)

= Prob(x1 = ui)Prob(x2 = vj)

= p
x1
i p

x2
j

the random variables x1 and x2 are independent if and only if rank(J) = 1.
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Independent random variables

We often have problems where

• x1 : Ω → {1, . . . , m} is a random variable

• x2 : Ω → {1, . . . , n} is a random variable

• x1 and x2 are independent

Here we construct the sample space

V =
{

(i, j) | i ∈ {1, . . . , m} and j ∈ {1, . . . , n}
}

with pmf

px(i, j) = px1(i) px2(j)
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The conditional pmf

Suppose x : Ω → R
2 is a random vector with induced pmf px : R

2 → [0, 1].

Consider the conditional probability

Prob(x1 = a | x2 = b) = Prob

(

{ω ∈ Ω | x1(ω) = a }
∣

∣

∣
{ω ∈ Ω | x2(ω) = b }

)

=
Prob

(

{ω ∈ Ω | x(ω) = (a, b) }
)

Prob

(

{ω ∈ Ω | x2(ω) = b }
)

=
px(a, b)

px2(b)

• Called the conditional pmf of x1 given x2

• Often written p|x2(a, b)
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Example: four dice

Four dice, sample space Ω =
{

ω ∈ R
4 | ωi ∈ {1, 2, . . . , 6}

}

• x : Ω → R is the sum of the first two dice

x = ω1 + ω2

• y : Ω → R is the sum of all four dice

y = ω1 + ω2 + ω3 + ω4

The induced pmf of

[

x
y

]

is

px,y(a, b) =
∑

w∈Ω | x(ω)=a and y(ω)=b

p(ω)
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Example: marginal pmf

• The induced pmf of x is given by

px(a) = Prob(x = a)

• We can compute this from the induced pmf of
[

x
y

]

since

px(a) =

24
∑

b=1

px,y(a, b)

• Also called the prior pmf of x, since it is the in-
formation we have about x before any measure-
ments.
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Example: conditional pmf

• Suppose we measure ymeas = 19

• The conditional pmf of x given y = ymeas is
shown.

• Also called the posterior pmf of x; i.e, the infor-
mation we have regarding x after measurement
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Example: dependent events

The above dice problem is a simple version of the following.

A xymeas

plant

+

w

Here

• We would like to determine an estimate xest of x, with ‘good’ properties

• We know a pmf for x (possibly obtained from previous measurements)

• w is random noise

• y = Ax + w is measured

Since y and x are dependent, by measuring y we discover information about x
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Covariance

Suppose x : Ω → R
n. Let µ = E x be the mean of x.

Define the covariance of x by

cov(x) = E
(

(x − µ)(x − µ)T
)

• We’ll often denote the covariance by Σ = cov(x)

• Σ is symmetric and positive semidefinite because

Σ =
∑

ω∈Ω

(x(ω) − µ)(x(ω) − µ)Tp(ω)

• Σii is the covariance of the i’th component xi

Σii = cov(xi)
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Correlation

Let Σ = cov(x). The correlation coefficient of xi and xj is

ρij =
Σij

√

ΣiiΣjj

• Since Σ ≥ 0, we have |ρij| ≤ 1

• If ρij = 0 then xi and xj are called uncorrelated.
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Product of expectations

Suppose x : Ω → R
2 is a 2-dimensional random variable and x1 and x2 are independent.

Then

E(x1x2) = E(x1)E(x2)

To see this, suppose x : Ω → {u1, . . . , um} × {v1, . . . , vn}, then

E(x1x2) =

m
∑

i=1

n
∑

j=1

px(ui, vj)uivj

=

m
∑

i=1

n
∑

j=1

p
x1
i p

x2
j uivj

=

( m
∑

i=1

p
x1
i ui

)( n
∑

j=1

p
x2
j vj

)

= E(x1)E(x2)
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Correlation and independence

Hence

if xi and xj are independent, then they are uncorrelated

Because if xi and xj are independent, then Σij = 0, since

Σij = E(xi − µi)(xj − µj)

= E(xi − µi)E(xj − µj)

= 0

• The converse is not true

• If x : Ω → R
n, and for all i, j the random variables xi and xj are pairwise indepen-

dent, then cov(x) is diagonal
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Affine transformations of random vectors

Suppose x : Ω → R
n is a random variable, and A ∈ R

m×n. Let y = Ax + b. Then

• The mean of y is the same affine function of the mean of x

E y = AE x + b

• The covariance of y is a linear function of the covariance of x

cov(y) = A cov(x)AT

These two facts will be very important in estimation for linear systems
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Affine transformations of random vectors

For the mean, we have

E y = E(Ax + b)

=
∑

ω∈Ω

(Ax(ω) + b)p(ω)

= b + A
∑

ω∈Ω

x(ω)p(ω)

= b + AE x

And for the covariance

cov(y) = E
(

(y − E y)(y − E y)T
)

= E
(

A(x − E x)(x − Ex)TAT
)

= AE
(

(x − E x)(x − E x)T
)

AT

= A cov(x)AT
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Sum of two independent random variables

Suppose x and y are independent random variables which take integer values

• x : Ω → {0, 1, . . . , m}

• y : Ω → {0, 1, . . . , n}

Define the random variable z : Ω → {0, . . . , m + n} by

z = x + y

The induced pmf of z is the convolution of px and py.

pz
k =

k
∑

i=0

px
i p

y
k−i
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Sum of two independent random variables

The proof is as follows.

pz
k = Prob(z = k)

=
∑

{

Prob(x = i and y = j)
∣

∣ i + j = k
}

=
∑

{

px
i p

y
j

∣

∣ i + j = k
}

=

k
∑

i=0

px
i p

y
k−i
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IID random variables

Suppose x1, . . . , xn are random variables, with xi : Ω → R
m

• They are called identically distributed if each xi has the same pmf.

• If they are also independent, they are called IID.

Suppose x1, . . . , xn are IID, each with mean v and covariance Q. Let x =





x1
...

xn



, then

the mean and covariance of x is

E x =









v
v
...
v









cov(x) =









Q
Q

...
Q
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IID random variables

Define the average sn : Ω → R
m

sn =
1

n

n
∑

i=1

xi

We have sn = Ax where A = 1
n

[

I I . . . I
]

, so its mean is

E sn = AE x = A









v
v
...
v









= v

and its covariance is

cov(sn) = A cov(x)AT = A









Q
Q

...
Q









AT =
Q

n

so taking the average of n IID random variables reduces the covariance by a factor of n



5 - 22 Random vectors S. Lall, Stanford 2011.01.13.01

Example: sums of IID random variables

The pmf of sn for various values of n
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Law of large numbers

Suppose xi : Ω → R are real-valued and IID, each with mean v and variance Q. The
(weak) law of large numbers is

lim
n→∞

Prob
(

|sn − v| ≤ ε
)

= 1

Proof is just from the the Chebyshev inequality

Prob
(

|sn − v| ≤ ε
)

≥ 1 − Q

nε2

• Here sn is the average of n IID random variables.

• The law of large numbers says that the probability that sn is within ε of the mean
tends to 1 as n becomes large.

• We say the sequence of random variables s0, s1, . . . converges in probability to v.
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Law of large numbers

We have the Chebyshev inequality

Prob
(

|sn − v| ≤ ε
)

≥ 1 − Q

nε2

Hence to achieve confidence width of ε at probability pconf, we need

ε =

√

Q

n(1 − pconf)

i.e., the confidence width decreases as
1√
n

.
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Estimating the mean

If we perform identical repeated experiments, then for large n the sample mean

sn =
1

n

n
∑

i=1

xi

will be close to the true mean with high probability.

Hence we can use this to estimate the mean of random data.
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Identifying a pmf from data

We have random samples x1, x2, . . . of x : Ω → V , and we would like to estimate px

• Define the indicator random variable Ij : V → R by

Ia(y) =

{

1 if y = a

0 otherwise

The expected value of Ia is

E Ia =
∑

b∈V

px(b)Ia(b) = px(a)

• So to estimate px(a), we compute the sample mean

s(a, n) =
1

n

n
∑

i=1

Ia(xi)

which is exactly the relative frequency of outcome x = a in n trials.
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Example: identifying a pmf

We have the pmf
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Simulating gives relative frequencies s(a, k) plotted against k for different a
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Example: identifying a pmf

The graph shows the relative frequency s(n, 1) and its confidence intervals
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