## 12 - Recursive estimation

- Recursive estimation
- Conditional independence
- Posterior PDFs
- Example: uniform PDFs
- Recursive estimation for Gaussians
- Conditional PDFs for Gaussians
- Alternative formulae
- Information interpretation
- Example: navigation
- Example: recursive estimation of a scalar


## Transition Matrices

Suppose

$$
y=f(x, w)
$$

We interpret

- $y$ is measured
- $x$ is a quantity we would like to estimate
- $w$ is noise

Random variables $x: \Omega \rightarrow X, y: \Omega \rightarrow Y$ and $w: \Omega \rightarrow W$, where $X, Y, W$ are finite sets.
We can represent the random map from $x$ to $y$ by the transition matrix $G$ given by

$$
G(q, z)=\operatorname{Prob}(y=q \mid x=z)
$$

## Example: noisy measurement

Suppose $x: \Omega \rightarrow\{1,2, \ldots, n\}$. We measure

$$
y=x+w
$$

The noise $w: \Omega \rightarrow\{0,1\}$ has pmf


The transition matrix is

$$
G=\left[\begin{array}{ccccc}
\frac{3}{4} & \frac{1}{4} & & & \\
& \frac{3}{4} & \frac{1}{4} & & \\
& & \ddots & & \\
& & & \frac{3}{4} & \frac{1}{4}
\end{array}\right]
$$

where we use the convention that $G_{i j}=G(j, i)$

## Equivalent representations

We can also go the other way, from transition matrix to function. Suppose $x: \Omega \rightarrow\{1,2\}$ and $y: \Omega \rightarrow\{1,4\}$ with transition matrix

$$
G=\left[\begin{array}{cccc}
1 / 3 & 1 / 6 & 1 / 2 & 0 \\
0 & 0 & 3 / 4 & 1 / 4
\end{array}\right]
$$

We construct a function $f$ and a random variable $w$ so that $y=f(x, w)$. Let $w=\left[\begin{array}{l}w_{1} \\ w_{2}\end{array}\right]$ where


$$
\begin{array}{ll}
\operatorname{Prob}\left(w_{1}=1\right)=1 / 3 & \operatorname{Prob}\left(w_{2}=3\right)=3 / 4 \\
\operatorname{Prob}\left(w_{1}=2\right)=1 / 6 & \operatorname{Prob}\left(w_{2}=4\right)=1 / 2 \\
\operatorname{Prob}\left(w_{1}=3\right)=1 / 2 &
\end{array}
$$

Let $f$ be

$$
f(x, w)= \begin{cases}w_{1} & \text { if } x=1 \\ w_{2} & \text { if } x=2\end{cases}
$$

For any matrix $G$ we can construct such a function $f$; it doesn't depend on the prior on $x$

## Transition Matrices

Suppose $y=f(x, w)$ and $w$ has pmf $p^{w}$. Suppose

$$
x \text { and } w \text { are independent }
$$

Then we can find the transition matrix without knowing the prior of $x$. We have

$$
\begin{aligned}
G(q, z) & =\operatorname{Prob}(y=q \mid x=z) \\
& =\frac{\operatorname{Prob}(f(x, w)=q \text { and } x=z)}{\operatorname{Prob}(x=z)} \\
& =\frac{\operatorname{Prob}(f(z, w)=q \text { and } x=z)}{\operatorname{Prob}(x=z)} \\
& =\frac{\operatorname{Prob}(f(z, w)=q) \operatorname{Prob}(x=z)}{\operatorname{Prob}(x=z)}
\end{aligned}
$$

since $w$ and $x$ are independent

$$
G(q, z)=\operatorname{Prob}(f(z, w)=q)
$$

## Continuous random variables

Suppose $x: \Omega \rightarrow \mathbb{R}^{n}$ and $y \Omega \rightarrow \mathbb{R}^{m}$. The transition matrix is replaced by the conditional pdf $G$ defined by

$$
\int_{A} G(q, z) d q=\operatorname{Prob}(y \in A \mid x=z)
$$

for all $A \subset \mathbb{R}^{m}$.
$G$ is also called a stochastic kernel

## Linear plus Gaussian

Suppose

$$
y=A x+w \quad w \sim \mathcal{N}(0, \Sigma)
$$

Then the stochastic kernel is

$$
G(q, z)=f_{\Sigma}(q-A z)
$$

where $f_{\Sigma}$ is the Gaussian pdf for $\mathcal{N}(0, \Sigma)$.

## Recursive estimation

Often we have several measurements $y_{1}, y_{2}, \ldots, y_{m}$, and a joint pdf $f\left(x, y_{1}, y_{2}, \ldots, y_{m}\right)$

- we receive measurements one at a time
- after measuring $y_{i}$, we construct an estimate $\hat{x}_{i}$
- when we receive $y_{i+1}$, we would like to update $\hat{x}_{i}$

For example, we often have

$$
\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{k}
\end{array}\right]=\left[\begin{array}{c}
A_{1} \\
A_{2} \\
\vdots \\
A_{k}
\end{array}\right] x+\left[\begin{array}{c}
w_{1} \\
w_{2} \\
\vdots \\
w_{k}
\end{array}\right]
$$

For example, in GPS,

- $y_{i}$ represents range measurements to satellite $i$
- When we receive new data, we'd like to update position estimates
- We do not want to have to store old data $y_{0}, y_{1}, \ldots, y_{i-1}$


## Representation as functiona

More generally

$$
\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{k}
\end{array}\right]=\left[\begin{array}{c}
f_{1}\left(x, w_{1}\right) \\
f_{2}\left(x, w_{2}\right) \\
\vdots \\
f_{k}\left(x, w_{k}\right)
\end{array}\right]
$$

or more succinctly

$$
y=f(x, w)
$$

where $w=\left(w_{1}, w_{2}, \ldots, w_{k}\right)$, etc.

## Transition matrix representation

$$
G\left(q_{1}, q_{2}, \ldots, q_{k}, z\right)=\operatorname{Prob}\left(y_{1}=q_{1}, \ldots, y_{k}=q_{k} \mid x=z\right)
$$

or

$$
G(q, z)=\operatorname{Prob}(y=q \mid x=z)
$$

## Recursive estimation

We have the following scenario

$$
\begin{aligned}
y_{1} & =f_{1}\left(x, w_{1}\right) \\
y_{2} & =f_{2}\left(x, w_{2}\right) \\
\vdots & \\
y_{k} & =f_{k}\left(x, w_{k}\right)
\end{aligned}
$$

where $x, w_{1}, w_{2}, \ldots, w_{k}$ are independent. Then $G$ factorizes:

$$
G(q, z)=G_{1}\left(q_{1}, z\right) G_{2}\left(q_{2}, z\right) \ldots G_{k}\left(q_{k}, z\right)
$$

Because

$$
\begin{aligned}
G(q, z) & =\operatorname{Prob}(f(z, w)=q) \\
& =\operatorname{Prob}\left(f_{1}\left(z, w_{1}\right)=q_{1}, \ldots, f_{k}\left(z, w_{k}\right)=q_{k}\right) \\
& =\operatorname{Prob}\left(f_{1}\left(z, w_{1}\right)=q_{1}\right) \ldots \operatorname{Prob}\left(f_{k}\left(z, w_{k}\right)=q_{k}\right)
\end{aligned}
$$

## Factorization of the pmf

We have

$$
G(q, z)=G_{1}\left(q_{1}, z\right) G_{2}\left(q_{2}, z\right) \ldots G_{k}\left(q_{k}, z\right)
$$

This means

$$
\operatorname{Prob}(y=q \mid x=z)=\operatorname{Prob}\left(y_{1}=q_{1} \mid x=z\right) \ldots \operatorname{Prob}\left(y_{k}=q_{k} \mid x=z\right)
$$

- The random variables $y_{1}, y_{2}, \ldots, y_{k}$ are called conditionally independent
- This is the key property that allows recursive estimation


## Conditional independence

$$
y_{1} \mid x=z \text { and } y_{2} \mid x=z \text { are independent for all } z
$$

for example, suppose

$$
\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] x+\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right] \quad \text { where } \quad \operatorname{cov}(w)=\Sigma=\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right] \quad \operatorname{cov}(x)=Q=1
$$



## Conditional independence

This does not imply that $y_{1}$ and $y_{2}$ are independent. We have

$$
\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{lll}
A_{1} & I & 0 \\
A_{2} & 0 & I
\end{array}\right]\left[\begin{array}{c}
x \\
w_{1} \\
w_{2}
\end{array}\right]
$$

hence

$$
\operatorname{cov}\left(\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]\right)=\left[\begin{array}{cc}
A_{1} Q A_{1}+\Sigma_{1} & A_{1} Q A_{2} \\
A_{2} Q A_{1}^{T} & A_{2} Q A_{2}^{T}+\Sigma_{2}
\end{array}\right]=\left[\begin{array}{ll}
3 & 1 \\
1 & 2
\end{array}\right]
$$



## Bayesian estimation review

- Start with
- prior $p_{0}(z)=\operatorname{Prob}(x=z)$
- transition probabilities $G(q, z)=\operatorname{Prob}(y=q \mid x=z)$.
- The joint pdf is then

$$
\operatorname{Prob}(y=q, x=z)=G(q, z) p_{0}(z)
$$

- Measure $y=y_{\text {meas }}$, and construct posterior $p_{1}\left(z, y_{\text {meas }}\right)=\operatorname{Prob}\left(x=z \mid y=y_{\text {meas }}\right)$

$$
p_{1}\left(z, y_{\text {meas }}\right)=\frac{G\left(y_{\text {meas }}, z\right) p_{0}(z)}{\sum_{a} G\left(y_{\text {meas }}, a\right) p_{0}(a)}
$$

- We can then construct an estimate in the usual way; e.g. to minimize a cost function.


## Recursive estimation

Let $p_{t}$ be the posterior pmf after measuring $y_{1}=q_{1}, \ldots, y_{t}=q_{t}$. By definition

$$
p_{t}\left(z, q_{1}, \ldots, q_{t}\right)=\frac{G_{1}\left(q_{1}, z\right) \ldots G_{t}\left(q_{t}, z\right) p_{t}(z)}{\sum_{a} G_{1}\left(q_{1}, a\right) \ldots G_{t}\left(q_{t}, a\right) p_{t}(a)}
$$

- We would like to use the posterior pdf $p_{t}$ after measuring $y_{1}, \ldots, y_{t}$ as the prior pdf when we receive measurement $y_{t+1}$.
- It turns out that this is possible when $y_{1}$ and $y_{2}$ are conditionally independent.
- And we can forget
the previous measurements
where they came from; i.e. the sensors $G_{1}, \ldots, G_{t}$
So we can do sensor fusion


## Recursive estimation

The main result: if $y_{1}, \ldots, y_{k}$ are conditionally independent, then

$$
p_{t+1}(z)=\frac{G_{t+1}\left(q_{t+1}, z\right) p_{t}(z)}{\sum_{a} G_{t+1}\left(q_{t+1}, a\right) p_{t}(a)}
$$

- We omit the dependence of $p_{t}$ on $q_{1}, \ldots, q_{t}$.
- If $X=\{1,2, \ldots, n\}$ then we implement this by storing $p_{t}$ as a vector in $\mathbb{R}^{n}$.
- $p_{t}$ is called the belief state. It is the only quantity we need to store.
- The history of observations $q_{1}, \ldots, q_{t}$ is called the information state


## Proof

Since $p_{t+1}$ is the posterior given $y_{1}, \ldots, y_{t}$, it is by definition

$$
p_{t+1}(z)=\frac{p_{0}(z) G_{1}\left(q_{1}, z\right) \ldots G_{t}\left(q_{t}, z\right) G_{t+1}\left(q_{t+1}, z\right)}{\sum_{a} p_{0}(a) G_{1}\left(q_{1}, a\right) \ldots G_{t}\left(q_{t}, a\right) G_{t+1}\left(q_{t+1}, a\right)}
$$

Now substitute into this expression the definition of $p_{t}$ to give

$$
\begin{aligned}
& =\frac{p_{t}(z)\left(\sum_{b} p_{0}(z) G_{1}\left(q_{1}, b\right) \ldots G_{t}\left(q_{t}, b\right)\right) G_{t+1}\left(q_{t+1}, z\right)}{\sum_{a} p_{0}(a) G_{1}\left(q_{1}, a\right) \ldots G_{t}\left(q_{t}, a\right) G_{t+1}\left(q_{t+1}, a\right)} \\
& =\frac{p_{t}(z)\left(\sum_{b} p_{0}(b) G_{1}\left(q_{1}, b\right) \ldots G_{t}\left(q_{t}, b\right)\right) G_{t+1}\left(q_{t+1}, z\right)}{\sum_{a} p_{t}(a)\left(\sum_{c} p_{0}(c) G_{1}\left(q_{1}, c\right) \ldots G_{t}\left(q_{t}, c\right)\right) G_{t+1}\left(q_{t+1}, a\right)} \\
& =\frac{p_{t}(z) G_{t+1}\left(q_{t+1}, z\right)}{\sum_{a} p_{t}(a) G_{t+1}\left(q_{t+1}, a\right)}
\end{aligned}
$$

as desired.

## Continuous case

It's almost the same:

$$
p_{t+1}(z)=\frac{p_{t}(z) G_{t+1}\left(q_{t+1}, z\right)}{\int_{a \in \mathbb{R}^{n}} p_{t}(a) G_{t+1}\left(q_{t+1}, a\right) d a}
$$

The proof is the same as in the discrete case.

## Recursive estimation with linear measurements and Gaussian noise

Suppose we have

$$
y=A x+w
$$

where $x$ and $w$ are independent, and $x \sim \mathcal{N}\left(\hat{x}_{0}, Q_{0}\right)$ and $w \sim \mathcal{N}(0, \Sigma)$.

This is equivalent to

- $x$ has prior $x \sim \mathcal{N}\left(\hat{x}_{0}, Q_{0}\right)$
- $y \mid(x=z)$ has pdf $\mathcal{N}(A z, \Sigma)$
because the joint pdf is $p(x, y)=p^{x}(x) p^{w}(y-A x)$

Then $x, y$ are jointly Gaussian, with

$$
\mathbf{E}\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
\hat{x}_{0} \\
A \hat{x}_{0}
\end{array}\right] \quad \operatorname{cov}\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{cc}
Q_{0} & Q_{0} A^{T} \\
A Q_{0} & A Q_{0} A^{T}+\Sigma
\end{array}\right]
$$

## Recursive estimation with Gaussian noise

Let's consider the problem

$$
\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right]=\left[\begin{array}{c}
A_{1} \\
A_{2} \\
\vdots \\
A_{m}
\end{array}\right] x+\left[\begin{array}{c}
w_{1} \\
w_{2} \\
\vdots \\
w_{m}
\end{array}\right]
$$

where

- $x$ has prior pdf $\mathcal{N}\left(\hat{x}_{0}, Q_{0}\right)$
- $w_{i}$ has pdf $\mathcal{N}\left(0, \Sigma_{i}\right)$
- $w_{i}$ and $w_{j}$ are independent if $i \neq j$


## Recursive estimation with Gaussian noise

The conditional covariance of $y$ given $x=z$ is

$$
\operatorname{cov}(y \mid x=z)=\left[\begin{array}{llll}
\Sigma_{1} & & & \\
& \Sigma_{2} & & \\
& & \ddots & \\
& & & \Sigma_{m}
\end{array}\right]
$$

and hence $y_{i}$ and $y_{j}$ are conditionally independent.

## Gaussians are special

We could just apply the formula

$$
p_{t+1}(z)=\frac{p_{t}(z) G_{t+1}\left(q_{t+1}, z\right)}{\int_{a \in \mathbb{R}^{n}} p_{t}(a) G_{t+1}\left(q_{t+1}, a\right) d a}
$$

because we know $G_{t}\left(q_{t}, z\right)=f_{\Sigma_{t}}\left(q_{t}-A_{t} z\right)$.

But we don't need to. Because

- we know $p_{0}$ is Gaussian.
- Hence the posterior $p_{1}$ will be Gaussian, and we know it's mean and covariance, so we know it completely
- Hence the posterior $p_{2}$ will be Gaussian, ...
- The idea: we don't need to store $p_{t}$. Since it's Gaussian, it is characterized completely by its mean and covariance.


## Recursive estimation with Gaussian noise

We know how to do Bayesian estimation for Gaussians; that is, if

- $x$ has prior $x \sim \mathcal{N}\left(\hat{x}_{0}, Q_{0}\right)$
- $y_{1} \mid(x=z)$ has pdf $\mathcal{N}\left(A_{1} z, \Sigma_{1}\right)$

Then the posterior pdf $h_{1}\left(x, y_{1 \text { meas }}\right)$ of $x \mid\left(y_{1}=y_{1 \text { meas }}\right)$ is $\mathcal{N}\left(\hat{x}_{1}, Q_{1}\right)$ where

$$
\begin{aligned}
& \hat{x}_{1}=\hat{x}_{0}+Q_{0} A_{1}^{T}\left(A_{1} Q_{0} A_{1}^{T}+\Sigma_{1}\right)^{-1}\left(y_{\text {meas }}-A_{1} \hat{x}_{0}\right) \\
& Q_{1}=Q_{0}-Q_{0} A_{1}^{T}\left(A_{1} Q_{0} A_{1}^{T}+\Sigma_{1}\right)^{-1} A_{1} Q_{0}
\end{aligned}
$$

## Recursive estimation with Gaussian noise

Now since $y_{i}$ and $y_{j}$ are conditionally independent for $i \neq j$, we can use the posterior pdf of $x \mid$ ( $y_{1}=y_{1 \text { meas }}$ as the prior pdf for the next measurement.

So, after measuring $y_{1}$, we have new prior

$$
x \mid\left(y_{1}=y_{1 \text { meas }}\right) \sim \mathcal{N}\left(\hat{x}_{1}, Q_{1}\right)
$$

Also the conditional pdf for $y_{2} \mid(x=z)$ is $\mathcal{N}\left(A_{2} z, \Sigma_{2}\right)$

And so we can apply exactly the same estimator as before.

## Summary: recursive estimation with Gaussians noise

Set $k=0$; repeat

1. update the covariance

$$
Q_{k+1}=Q_{k}-Q_{k} A_{k+1}^{T}\left(A_{k+1} Q_{k} A_{k+1}^{T}+\Sigma_{k+1}\right)^{-1} A_{k+1} Q_{k}
$$

2. update the estimate

$$
\hat{x}_{k+1}=\hat{x}_{k}+Q_{k} A_{k+1}^{T}\left(A_{k+1} Q_{k} A_{k+1}^{T}+\Sigma_{k+1}\right)^{-1}\left(y_{k+1}-A_{k+1} \hat{x}_{k}\right)
$$

3. $k \mapsto k+1$

## Alternative formulae

Set $k=0$; repeat

1. update the covariance

$$
Q_{k+1}^{-1}=Q_{k}^{-1}+A_{k+1}^{T} \Sigma_{k+1}^{-1} A_{k+1}
$$

2. update the estimate

$$
\hat{x}_{k+1}=\hat{x}_{k}+Q_{k+1} A_{k+1}^{T} \Sigma_{k+1}^{-1}\left(y_{k+1}-A_{k+1} \hat{x}_{k}\right)
$$

3. $k \mapsto k+1$

## Information interpretation

with each new measurement, we have

$$
Q_{k+1}^{-1}=Q_{k}^{-1}+A_{k+1}^{T} \Sigma_{k+1}^{-1} A_{k+1}
$$

inverse of covariance matrix $Q_{i}$ is called the information matrix information matrices add when combining data
we have $Q_{k+1}^{-1} \geq Q_{k}^{-1}$, i.e., with each measurement, our information increases

## mean-square-error

this is equivalent to $Q_{k+1} \leq Q_{k}$, and so the mean-square error satisfies

$$
\mathbf{E}\left\|x-\hat{x}_{k+1}\right\|^{2}=\operatorname{trace} Q_{k+1}
$$

$$
\begin{aligned}
& =\sum_{i=1}^{n} e_{i}^{T} Q_{k+1} e_{i} \\
& \leq \operatorname{trace} Q_{k} \\
& =\mathbf{E}\left\|x-\hat{x}_{k}\right\|^{2}
\end{aligned}
$$

i.e. the mean-square error is non-increasing

## Example: navigation



## Example: recursive estimation of a scalar

suppose

$$
y_{i}=x+w_{i} \quad \text { for } i=1, \ldots, k
$$

and $w_{i} \sim \mathcal{N}(0,1)$, and $w_{i}, w_{j}$ are independent when $i \neq j$
Now assume prior $x \sim \mathcal{N}(0,1)$. We know

$$
\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{p}
\end{array}\right]=\left[\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right] x+\left[\begin{array}{c}
w_{1} \\
w_{2} \\
\vdots \\
w_{p}
\end{array}\right]
$$

and so, for any $p$

$$
\hat{x}_{p}=\frac{1}{p+1} \sum_{i=1}^{p} y_{i}
$$

This tends to the sample mean of the measurements; as expected it is biased by the prior.

## Example: recursive estimation of a scalar

We have

$$
Q_{k+1}^{-1}=Q_{k}^{-1}+1
$$

and therefore $Q_{k}=\frac{1}{k+1}$.
Then the recursive estimator is

$$
\begin{aligned}
\hat{x}_{k+1} & =\hat{x}_{k}+Q_{k+1}\left(y_{k+1}-\hat{x}_{k}\right) \\
& =\frac{k+1}{k+2} \hat{x}_{k}+\frac{1}{k+2} y_{k+1}
\end{aligned}
$$

so given $y_{t+1}$ and we can update $\hat{x}_{t}$ find $\hat{x}_{t+1}$; don't need to remember $y_{1}, \ldots, y_{t}$

- Notice that the error covariance $Q_{k} \rightarrow 0$
- As time $k$ becomes large, the data has no effect.
- However, if $x$ is changing, we need the estimator to respond to this; as we will see, the Kalman filter is a remedy for this problem.

