# **12 - Recursive estimation**

- Recursive estimation
- Conditional independence
- Posterior PDFs
- Example: uniform PDFs
- Recursive estimation for Gaussians
- Conditional PDFs for Gaussians
- Alternative formulae
- Information interpretation
- Example: navigation
- Example: recursive estimation of a scalar

### **Transition Matrices**

Suppose

$$y = f(x, w)$$

We interpret

- y is measured
- x is a quantity we would like to estimate
- w is noise

Random variables  $x: \Omega \to X$ ,  $y: \Omega \to Y$  and  $w: \Omega \to W$ , where X, Y, W are finite sets.

We can represent the *random map* from x to y by the *transition matrix* G given by

$$G(q,z) = \mathbf{Prob}(y = q \,|\, x = z)$$

4=1

314

34

14

z = 1

#### **Example: noisy measurement**

Suppose  $x : \Omega \to \{1, 2, \dots, n\}$ . We measure

The noise 
$$w: \Omega \to \{0, 1\}$$
 has pmf

$$Prob(w = 0) = \frac{3}{4}$$
  $Prob(w = 1) = \frac{1}{4}$ 

The *transition matrix* is

$$G = \begin{bmatrix} \frac{3}{4} & \frac{1}{4} & & \\ & \frac{3}{4} & \frac{1}{4} & \\ & \ddots & \\ & & \frac{3}{4} & \frac{1}{4} \end{bmatrix}$$

y = x + w

where we use the convention that  $G_{ij} = G(j, i)$ 

### **Equivalent representations**

We can also go the other way, from transition matrix to function. Suppose  $x : \Omega \to \{1, 2\}$ and  $y : \Omega \to \{1, 4\}$  with transition matrix

$$G = \begin{bmatrix} 1/3 & 1/6 & 1/2 & 0\\ 0 & 0 & 3/4 & 1/4 \end{bmatrix}$$

We construct a function f and a random variable w so that y=f(x,w). Let  $w=\begin{bmatrix}w_1\\w_2\end{bmatrix}$  where

$$Prob(w_1 = 1) = 1/3$$
 $Prob(w_1 = 2) = 1/6$  $Prob(w_2 = 3) = 3/4$  $Prob(w_1 = 3) = 1/2$  $Prob(w_2 = 4) = 1/2$ 



$$f(x,w) = \begin{cases} w_1 & \text{if } x = 1\\ w_2 & \text{if } x = 2 \end{cases}$$

For any matrix G we can construct such a function f; it doesn't depend on the prior on x



### **Transition Matrices**

Suppose y = f(x, w) and w has pmf  $p^w$ . Suppose

 $\boldsymbol{x} \text{ and } \boldsymbol{w} \text{ are independent}$ 

Then we can find the transition matrix without knowing the prior of x. We have

$$\begin{split} G(q,z) &= \mathbf{Prob}(y=q \mid x=z) \\ &= \frac{\mathbf{Prob}(f(x,w)=q \text{ and } x=z)}{\mathbf{Prob}(x=z)} \\ &= \frac{\mathbf{Prob}(f(z,w)=q \text{ and } x=z)}{\mathbf{Prob}(x=z)} \\ &= \frac{\mathbf{Prob}(f(z,w)=q) \mathbf{Prob}(x=z)}{\mathbf{Prob}(x=z)} \end{split}$$

since w and x are independent

$$G(q,z) = \mathbf{Prob}(f(z,w) = q)$$

#### **Continuous random variables**

Suppose  $x : \Omega \to \mathbb{R}^n$  and  $y\Omega \to \mathbb{R}^m$ . The transition matrix is replaced by the conditional pdf G defined by

$$\int_A G(q,z) \, dq = \mathbf{Prob}(y \in A \,|\, x = z)$$

for all  $A \subset \mathbb{R}^m$ .

G is also called a *stochastic kernel* 

### Linear plus Gaussian

Suppose

$$y = Ax + w$$
  $w \sim \mathcal{N}(0, \Sigma)$ 

Then the stochastic kernel is

$$G(q,z) = f_{\Sigma}(q - Az)$$

where  $f_{\Sigma}$  is the Gaussian pdf for  $\mathcal{N}(0, \Sigma)$ .

#### **Recursive estimation**

Often we have several measurements  $y_1, y_2, \ldots, y_m$ , and a joint pdf  $f(x, y_1, y_2, \ldots, y_m)$ 

- we receive measurements one at a time
- after measuring  $y_i$ , we construct an estimate  $\hat{x}_i$
- when we receive  $y_{i+1}$ , we would like to *update*  $\hat{x}_i$

For example, we often have

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_k \end{bmatrix} = \begin{bmatrix} A_1 \\ A_2 \\ \vdots \\ A_k \end{bmatrix} x + \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_k \end{bmatrix}$$

For example, in GPS,

- $y_i$  represents range measurements to satellite i
- When we receive new data, we'd like to update position estimates
- We do not want to have to store old data  $y_0, y_1, \ldots, y_{i-1}$

### **Representation** as functiona

More generally

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_k \end{bmatrix} = \begin{bmatrix} f_1(x, w_1) \\ f_2(x, w_2) \\ \vdots \\ f_k(x, w_k) \end{bmatrix}$$

or more succinctly

$$y = f(x, w)$$

where 
$$w = (w_1, w_2, \ldots, w_k)$$
, etc.

## **Transition matrix representation**

$$G(q_1, q_2, \dots, q_k, z) = \mathbf{Prob}(y_1 = q_1, \dots, y_k = q_k | x = z)$$

or

$$G(q, z) = \mathbf{Prob}(y = q \mid x = z)$$

### **Recursive estimation**

We have the following scenario

$$y_1 = f_1(x, w_1)$$
  
 $y_2 = f_2(x, w_2)$   
:  
 $y_k = f_k(x, w_k)$ 

where  $x, w_1, w_2, \ldots, w_k$  are *independent*. Then G factorizes:

$$G(q, z) = G_1(q_1, z)G_2(q_2, z)\dots G_k(q_k, z)$$

Because

$$G(q, z) = \operatorname{Prob}(f(z, w) = q)$$
  
= 
$$\operatorname{Prob}(f_1(z, w_1) = q_1, \dots, f_k(z, w_k) = q_k)$$
  
= 
$$\operatorname{Prob}(f_1(z, w_1) = q_1) \dots \operatorname{Prob}(f_k(z, w_k) = q_k)$$

### **Factorization of the pmf**

We have

$$G(q,z) = G_1(q_1,z)G_2(q_2,z)\ldots G_k(q_k,z)$$

This means

$$Prob(y = q | x = z) = Prob(y_1 = q_1 | x = z) \dots Prob(y_k = q_k | x = z)$$

- The random variables  $y_1, y_2, \ldots, y_k$  are called *conditionally independent*
- This is the key property that allows recursive estimation

### **Conditional independence**

$$y_1 \,|\, x = z$$
 and  $y_2 \,|\, x = z$  are independent for all  $z$ 

#### for example, suppose



х

### **Conditional independence**

This does *not* imply that  $y_1$  and  $y_2$  are independent. We have

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} A_1 & I & 0 \\ A_2 & 0 & I \end{bmatrix} \begin{bmatrix} x \\ w_1 \\ w_2 \end{bmatrix}$$

hence

$$\mathbf{cov}\left(\begin{bmatrix}y_1\\y_2\end{bmatrix}\right) = \begin{bmatrix}A_1QA_1 + \Sigma_1 & A_1QA_2\\A_2QA_1^T & A_2QA_2^T + \Sigma_2\end{bmatrix} = \begin{bmatrix}3 & 1\\1 & 2\end{bmatrix}$$



#### **Bayesian estimation review**

- Start with
  - prior  $p_0(z) = \mathbf{Prob}(x = z)$
  - transition probabilities  $G(q, z) = \mathbf{Prob}(y = q | x = z)$ .
- The joint pdf is then

$$\mathbf{Prob}(y = q, x = z) = G(q, z)p_0(z)$$

• Measure  $y = y_{\text{meas}}$ , and construct posterior  $p_1(z, y_{\text{meas}}) = \mathbf{Prob}(x = z \mid y = y_{\text{meas}})$ 

$$p_1(z, y_{\text{meas}}) = \frac{G(y_{\text{meas}}, z)p_0(z)}{\sum_a G(y_{\text{meas}}, a)p_0(a)}$$

• We can then construct an estimate in the usual way; e.g. to minimize a cost function.

#### **Recursive estimation**

Let  $p_t$  be the *posterior pmf* after measuring  $y_1 = q_1, \ldots, y_t = q_t$ . By definition

$$p_t(z, q_1, \dots, q_t) = \frac{G_1(q_1, z) \dots G_t(q_t, z) p_t(z)}{\sum_a G_1(q_1, a) \dots G_t(q_t, a) p_t(a)}$$

- We would like to use the posterior pdf  $p_t$  after measuring  $y_1, \ldots, y_t$  as the prior pdf when we receive measurement  $y_{t+1}$ .
- It turns out that this is possible when  $y_1$  and  $y_2$  are conditionally independent.
- And we can forget

the previous measurements

where they came from; i.e. the sensors  $G_1, \ldots, G_t$ 

So we can do *sensor fusion* 

#### **Recursive estimation**

The main result: if  $y_1, \ldots, y_k$  are conditionally independent, then

$$p_{t+1}(z) = \frac{G_{t+1}(q_{t+1}, z)p_t(z)}{\sum_a G_{t+1}(q_{t+1}, a)p_t(a)}$$

- We omit the dependence of  $p_t$  on  $q_1, \ldots, q_t$ .
- If  $X = \{1, 2, \dots, n\}$  then we implement this by storing  $p_t$  as a *vector* in  $\mathbb{R}^n$ .
- $p_t$  is called the *belief state*. It is the only quantity we need to store.
- The history of observations  $q_1, \ldots, q_t$  is called the *information state*

### Proof

Since  $p_{t+1}$  is the posterior given  $y_1, \ldots, y_t$ , it is by definition

$$p_{t+1}(z) = \frac{p_0(z)G_1(q_1, z)\dots G_t(q_t, z)G_{t+1}(q_{t+1}, z)}{\sum_a p_0(a)G_1(q_1, a)\dots G_t(q_t, a)G_{t+1}(q_{t+1}, a)}$$

Now substitute into this expression the definition of  $p_t$  to give

$$= \frac{p_t(z) \Big(\sum_b p_0(z) G_1(q_1, b) \dots G_t(q_t, b)\Big) G_{t+1}(q_{t+1}, z)}{\sum_a p_0(a) G_1(q_1, a) \dots G_t(q_t, a) G_{t+1}(q_{t+1}, a)}$$
  
$$= \frac{p_t(z) \Big(\sum_b p_0(b) G_1(q_1, b) \dots G_t(q_t, b)\Big) G_{t+1}(q_{t+1}, z)}{\sum_a p_t(a) \Big(\sum_c p_0(c) G_1(q_1, c) \dots G_t(q_t, c)\Big) G_{t+1}(q_{t+1}, a)}$$
  
$$= \frac{p_t(z) G_{t+1}(q_{t+1}, z)}{\sum_a p_t(a) G_{t+1}(q_{t+1}, a)}$$

as desired.

### **Continuous case**

It's almost the same:

$$p_{t+1}(z) = \frac{p_t(z)G_{t+1}(q_{t+1}, z)}{\int_{a \in \mathbb{R}^n} p_t(a)G_{t+1}(q_{t+1}, a) \, da}$$

The proof is the same as in the discrete case.

#### **Recursive estimation with linear measurements and Gaussian noise**

Suppose we have

$$y = Ax + w$$

where x and w are independent, and  $x \sim \mathcal{N}(\hat{x}_0, Q_0)$  and  $w \sim \mathcal{N}(0, \Sigma)$ .

This is equivalent to

• x has prior  $x \sim \mathcal{N}(\hat{x}_0, Q_0)$ 

•  $y \mid (x = z)$  has pdf  $\mathcal{N}(Az, \Sigma)$ because the joint pdf is  $p(x, y) = p^x(x)p^w(y - Ax)$ 

Then x, y are jointly Gaussian, with

$$\mathbf{E}\begin{bmatrix} x\\ y \end{bmatrix} = \begin{bmatrix} \hat{x}_0\\ A\hat{x}_0 \end{bmatrix} \qquad \mathbf{cov}\begin{bmatrix} x\\ y \end{bmatrix} = \begin{bmatrix} Q_0 & Q_0 A^T\\ AQ_0 & AQ_0 A^T + \Sigma \end{bmatrix}$$

### **Recursive estimation with Gaussian noise**

Let's consider the problem

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix} = \begin{bmatrix} A_1 \\ A_2 \\ \vdots \\ A_m \end{bmatrix} x + \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_m \end{bmatrix}$$

where

- x has prior pdf  $\mathcal{N}(\hat{x}_0, Q_0)$
- $w_i$  has pdf  $\mathcal{N}(0, \Sigma_i)$
- $w_i$  and  $w_j$  are independent if  $i \neq j$

12 - 22 Recursive estimation

#### **Recursive estimation with Gaussian noise**

The conditional covariance of y given x = z is

$$\mathbf{cov}(y \,|\, x = z) = \begin{bmatrix} \Sigma_1 & & \\ & \Sigma_2 & \\ & & \ddots & \\ & & & \Sigma_m \end{bmatrix}$$

and hence  $y_i$  and  $y_j$  are conditionally independent.

### Gaussians are special

We *could* just apply the formula

$$p_{t+1}(z) = \frac{p_t(z)G_{t+1}(q_{t+1}, z)}{\int_{a \in \mathbb{R}^n} p_t(a)G_{t+1}(q_{t+1}, a) \, da}$$

because we know  $G_t(q_t, z) = f_{\Sigma_t}(q_t - A_t z)$ .

But we don't need to. Because

- we know  $p_0$  is Gaussian.
- Hence the posterior  $p_1$  will be Gaussian, and we know it's mean and covariance, so we know it completely
- Hence the posterior  $p_2$  will be Gaussian, ...
- The idea: we don't need to store  $p_t$ . Since it's Gaussian, it is characterized completely by its mean and covariance.

#### **Recursive estimation with Gaussian noise**

We know how to do Bayesian estimation for Gaussians; that is, if

- x has prior  $x \sim \mathcal{N}(\hat{x}_0, Q_0)$
- $y_1 \mid (x = z)$  has pdf  $\mathcal{N}(A_1 z, \Sigma_1)$

Then the posterior pdf  $h_1(x, y_{1 meas})$  of  $x \mid (y_1 = y_{1 meas})$  is  $\mathcal{N}(\hat{x}_1, Q_1)$  where

$$\hat{x}_1 = \hat{x}_0 + Q_0 A_1^T (A_1 Q_0 A_1^T + \Sigma_1)^{-1} (y_{\text{meas}} - A_1 \hat{x}_0)$$

$$Q_1 = Q_0 - Q_0 A_1^T (A_1 Q_0 A_1^T + \Sigma_1)^{-1} A_1 Q_0$$

#### **Recursive estimation with Gaussian noise**

Now since  $y_i$  and  $y_j$  are conditionally independent for  $i \neq j$ , we can use the posterior pdf of  $x \mid (y_1 = y_{1\text{meas}} \text{ as the prior pdf for the next measurement.}$ 

So, after measuring  $y_1$ , we have new prior

$$x \mid (y_1 = y_{1 \text{meas}}) \sim \mathcal{N}(\hat{x}_1, Q_1)$$

Also the conditional pdf for  $y_2 | (x = z)$  is  $\mathcal{N}(A_2 z, \Sigma_2)$ 

And so we can apply exactly the same estimator as before.

### Summary: recursive estimation with Gaussians noise

Set k = 0; repeat

1. update the covariance

$$Q_{k+1} = Q_k - Q_k A_{k+1}^T (A_{k+1} Q_k A_{k+1}^T + \Sigma_{k+1})^{-1} A_{k+1} Q_k$$

#### 2. update the estimate

$$\hat{x}_{k+1} = \hat{x}_k + Q_k A_{k+1}^T (A_{k+1} Q_k A_{k+1}^T + \Sigma_{k+1})^{-1} (y_{k+1} - A_{k+1} \hat{x}_k)$$

3.  $k \mapsto k+1$ 

### **Alternative formulae**

Set k = 0; repeat

1. update the covariance

$$Q_{k+1}^{-1} = Q_k^{-1} + A_{k+1}^T \Sigma_{k+1}^{-1} A_{k+1}$$

#### 2. *update the estimate*

$$\hat{x}_{k+1} = \hat{x}_k + Q_{k+1} A_{k+1}^T \Sigma_{k+1}^{-1} (y_{k+1} - A_{k+1} \hat{x}_k)$$

3.  $k \mapsto k+1$ 

### **Information interpretation**

with each new measurement, we have

$$Q_{k+1}^{-1} = Q_k^{-1} + A_{k+1}^T \Sigma_{k+1}^{-1} A_{k+1}$$

inverse of covariance matrix  $Q_i$  is called the *information matrix* information matrices *add* when combining data

we have  $Q_{k+1}^{-1} \ge Q_k^{-1}$ , i.e., with each measurement, our information increases

#### mean-square-error

this is equivalent to  $Q_{k+1} \leq Q_k$  , and so the mean-square error satisfies

$$\mathbf{E} \| x - \hat{x}_{k+1} \|^2 = \operatorname{trace} Q_{k+1}$$
$$= \sum_{i=1}^n e_i^T Q_{k+1} e_i$$
$$\leq \operatorname{trace} Q_k$$
$$= \mathbf{E} \| x - \hat{x}_k \|^2$$

i.e. the mean-square error is non-increasing

### **Example:** navigation



#### **Example:** recursive estimation of a scalar

suppose

$$y_i = x + w_i$$
 for  $i = 1, ..., k$ 

and  $w_i \sim \mathcal{N}(0, 1)$ , and  $w_i$ ,  $w_j$  are independent when  $i \neq j$ 

Now assume prior  $x \sim \mathcal{N}(0, 1)$ . We know

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_p \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} x + \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_p \end{bmatrix}$$

and so, for any p

$$\hat{x}_p = \frac{1}{p+1} \sum_{i=1}^p y_i$$

This tends to the sample mean of the measurements; as expected it is biased by the prior.

### **Example:** recursive estimation of a scalar

We have

$$Q_{k+1}^{-1} = Q_k^{-1} + 1$$

and therefore  $Q_k = \frac{1}{k+1}$ .

Then the recursive estimator is

$$\hat{x}_{k+1} = \hat{x}_k + Q_{k+1}(y_{k+1} - \hat{x}_k)$$
$$= \frac{k+1}{k+2}\hat{x}_k + \frac{1}{k+2}y_{k+1}$$

so given  $y_{t+1}$  and we can update  $\hat{x}_t$  find  $\hat{x}_{t+1}$ ; don't need to remember  $y_1, \ldots, y_t$ 

- Notice that the error covariance  $Q_k \rightarrow 0$
- As time k becomes large, the data has no effect.
- However, if x is changing, we need the estimator to respond to this; as we will see, the *Kalman filter* is a remedy for this problem.