
16 - 1 Regression and learning S. Lall, Stanford 2011.03.03.01

16 - Regression and learning

• Linear regression

• The linear estimator with smallest MSE

• Bias of the LMMSE

• Performance of the LMMSE

• The correlation coefficient

• Example: LMMSE when the pdf is non-Gaussian

• Polynomial regression

• Example: polynomial regression

• Learning an estimator based on data

• SLMMSE and least squares

• Example: SLMMSE

• Example: sample polynomial estimators

• Validation
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Linear regression

Find the linear estimator φ(y) = Ly + c that minimizes

E
(

‖x − φ(y)‖2
)

• x : Ω → R
n and y : Ω → R

m are random variables.

• we can choose L ∈ R
n×m and c ∈ R

n

• φ is called the regression function

• called the LMMSE problem



16 - 3 Regression and learning S. Lall, Stanford 2011.03.03.01

Linear regression

Find the linear estimator φ(y) = Ly + c that minimizes

E
(

‖x − φ(y)‖2
)

We restrict our search to linear function φ : R
m → R

n

• we’ll see that we don’t need to know the pdf to find the optimal linear estimator

• the best linear estimator is often easier to compute than the MMSE

• if x, y are jointly Gaussian, then the best linear estimator is the MMSE estimator,
which happens to be linear in this case
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The linear estimator with smallest MSE

Define the error

z = φ(y) − x

=
[

−I L
]

[

x
y

]

+ c

The mean and covariance of z are

E z =
[

−I L
]

[

µx

µy

]

+ c

cov z =
[

−I L
]

[

Σx Σxy

Σyx Σy

] [

−I
LT

]
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The linear estimator with smallest MSE

Using the mean-variance decomposition, the MSE is

E
(

‖z‖2
)

= ‖E z‖2 + trace(cov(z))

=

∥

∥

∥

∥

[

−I L
]

[

µx

µy

]

+ c

∥

∥

∥

∥

2

+ trace

(

[

−I L
]

[

Σx Σxy

Σyx Σy

] [

−I
LT

])

Hence the optimal c is

copt = µx − Lµy
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The linear estimator with smallest MSE

By completion of squares, we have

[

Σx Σxy

Σyx Σy

]

=

[

I ΣxyΣ
−1

y

0 I

] [

Σx − ΣxyΣ
−1

y Σyx 0
0 Σy

] [

I 0
Σ−1

y Σyx I

]

so the MSE is

E
(

‖z‖2
)

= trace(cov(z))

= trace(Σx − ΣxyΣ
−1

y Σyx) + trace
(

(L − ΣxyΣ
−1

y )Σy(L − ΣxyΣ
−1

y )T
)

and hence the optimal L is

Lopt = ΣxyΣ
−1

y
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Summary: the linear estimator with minimum MSE

The linear estimator with minimum mean square error is

φlmmse(y) = µx + ΣxyΣ
−1

y (y − µy)

and it achieves a mean square error of

E
(

‖x − φlmmse(y)‖2
)

= trace(Σx − ΣxyΣ
−1

y Σyx)

• Called the linear minimum mean-square-error estimator (LMMSE)

• Has minimum MSE among all linear estimators, even when x, y not Gaussian

• Only depends on the mean and covariance of x, y; we don’t need the pdf.

• The LMMSE is the same as the MMSE when x, y are jointly Gaussian
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Bias of the LMMSE

We have

E(x − φlmmse(y)) = E
(

x − µx − ΣxyΣ
−1

y (y − µy)
)

= 0

and so the LMMSE is unbiased
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Performance of the LMMSE

The optimal LMMSE satisfies

E
(

‖x − φ(y)‖2
)

≤ trace cov(x)

• Because the trivial estimator φ(y) = µx achieves an MSE of cov(x).

• trace cov(x) is a measure of how much variation there is in x

• E
(

‖x − φ(y)‖2
)

is a measure of how much x varies about our estimate φ(y)
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The correlation coefficient

For scalar x, y, the LMMSE achieves

E
(

‖x − φlmmse(y)‖2
)

= (1 − ρ2)Σx

• ρ is the correlation coefficient

ρ =
Σxy

√

ΣyΣx

• We interpret ρ as a measure of how close x is to a linear
function of y.

• When ρ = 1, the LMMSE achieves an MSE of zero

• When ρ = 0, there is no linear estimator that does better
than simply φ(y) = µx
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Example: LMMSE for a non-Gaussian PDF

(x, y) are uniformly distributed on the L-shaped
region A, i.e., the pdf is

f (x, y) =

{

4

3
if (x, y) ∈ A

0 otherwise

• By integration we have
[

µx

µy

]

=

[

7

12

5

12

]

Σ =

[

11

144

1

36

1

36

11

144

]

• The LMMSE is

x̂lmmse =
7

12
+

4

11

(

y −
5

12

)

• It achieves an MSE of 35

528
≈ 0.0663, slightly larger than the 0.0625 achieved by the

nonlinear MMSE estimator.
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Example: LMMSE for non-Gaussian PDF

Let’s return to the uniform pdf on the triangle.

• By integration we have
[

µx

µy

]

=

[

2

3

1

3

]

Σ =

[

1

18

1

36

1

36

1

18

]

• The LMMSE is

x̂lmmse =
1

3
+

1

2

(

y −
2

3

)

Since the MMSE is linear, it is the same as the LMMSE (but computed differently)

• The MSE is 1

24
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More general regression

Find the estimator of the form

φ(y) = a1f1 + a2f2 + · · · + adfd

which minimizes the mean square error.

• The functions fj : R
m → R

n are called regressors

• Often we don’t need the pdf; just the expected value of particular functions
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Polynomial regression

For scalar x and y, find the degree d polynomial estimator with minimum MSE.

φ(y) = a0 + a1y + a2y
2 + · · · + ady

d

The MSE is

E(a0 + a1y + · · · + ady
d − x)2 = E(aTq − x)2

= aT
E(qqT )a − 2aT

E(qx) + E x2

=

[

a
1

]T [

E(qqT ) E(qx)
E(qx)T E(x2)

] [

a
1

]

where

a =









a0

a1

...
ad









q =









1
y
...
yd









qqT =









1 y y2 . . .
y y2

y2

...
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Polynomial regression

The optimal a is

aopt = −
(

E(qqT )
)−1

E(qx)

• We need to know the moments

E qx =









E x
E xy

...
E xyd









E qqT =









1 E y E y2 . . .
E y E y2

E y2

...
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Example: polynomial regression

For the same L-shaped region as before, the polynomial MMSE estimators of degree 2
and 7 are below.
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Learning an estimator from data

Find the linear estimator φ(y) = Ly + c that minimizes the sample MSE

1

N

N
∑

i=1

‖xi − φ(yi)‖
2

• We are given N data pairs (x1, y1), (x2, y2), . . . , (xN , yN)

• We do not know the pdf of (x, y)

• We are learning an estimator based on the data

• The sample MSE is approximately equal to the true MSE



16 - 18 Regression and learning S. Lall, Stanford 2011.03.03.01

Least squares

The estimator that minimizes the sample MSE is the least-squares fit of the data

Because with linear estimator φ(y) = Ly + c, the sample MSE is

1

N

N
∑

i=1

‖xi − Lyi − c‖2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Called learning the estimator, or the method of moments, or the sample LMMSE, or
least-squares
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The SLMMSE (i.e., least squares)

The linear estimator which minimizes the sample MSE is

φslmmse(y) = x̄ + RxyR
−1

y (y − ȳ)

it achieves a sample MSE of

1

N

N
∑

i=1

(

‖x − φslmmse(y)‖2
)

= trace(Rx − RxyR
−1

y Ryx)

• We use the following mean and covariance; note the constant is 1/N not 1/(N − 1).

[

x̄
ȳ

]

=
1

N

N
∑

i=1

[

xi

yi

] [

Rx Rxy

Ryx Ry

]

=
1

N

N
∑

i=1

[

xi − x̄
yi − ȳ

] [

xi − x̄
yi − ȳ

]T
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Proof

Let zi be the error zi = xi − Lyi − c. Then

z̄ =
[

−I L
]

[

x̄
ȳ

]

+ c zi − z̄ =
[

−I L
]

[

xi − x̄
yi − ȳ

]

Then the sample MSE is

1

N

N
∑

i=1

‖zi‖
2 =

1

N

N
∑

i=1

‖zi − z̄ + z̄‖2

=
1

N

N
∑

i=1

‖zi − z̄‖2 + ‖z̄‖2

=
1

N

N
∑

i=1

∥

∥

∥

∥

[

−I L
]

[

xi − x̄
yi − ȳ

]
∥

∥

∥

∥

2

+

∥

∥

∥

∥

[

−I L
]

[

x̄
ȳ

]

+ c

∥

∥

∥

∥

2

Hence the optimal c is copt = x̄ − Lȳ
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Proof continued

Now define (similarly for Y and Z)

X =
[

x1 x2 . . . xN

]

X̄ =
[

x̄ x̄ . . . x̄
]

Then with the optimal c, the sample MSE is

1

N

N
∑

i=1

‖zi‖
2 =

1

N

N
∑

i=1

∥

∥

∥

∥

[

−I L
]

[

xi − x̄
yi − ȳ

]
∥

∥

∥

∥

2

=
1

N

∥

∥

∥

∥

[

−I L
]

[

X − X̄
Y − Ȳ

]
∥

∥

∥

∥

2

F

=
1

N
trace

[

−I L
]

[

X − X̄
Y − Ȳ

] [

X − X̄
Y − Ȳ

]T [

−I
LT

]

= trace
[

−I L
]

[

Rx Rxy

Ryx Ry

] [

−I
LT

]

and (as for the LMMSE) completion of squares gives the result.
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Least squares and SLMMSE

• Both the sample means and covariances are consistent.

i.e., as we collect more data, the sample means and covariances converge to the true
means and covariances.

• Hence one can show that (for nice pdfs) the SLMMSE converges to the true LMMSE

• We can compute the SLMMSE without any model

• If in addition we have a model, such as the joint pdf or the covariances, then we can
also analyze the error.
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Three methods for constructing estimators

• The MMSE: Uses the joint pdf of x, y; optimal estimator φ(y) = E(x | y = ymeas)

• The LMMSE: Uses only the mean and covariance of x, y; gives optimal estimator
φ(y) = µx + ΣxyΣ

−1

y (y − µy)

• The sample LMMSE: Uses only data; optimal estimator φ(y) = x̄ + RxyR
−1

y (y − ȳ)

• The sample LMMSE converges to the LMMSE as the amount of data N → ∞.

• The LMMSE is the same as the MMSE if x, y are jointly Gaussian.



0 0.5 1

0

0.5

1

16 - 24 Regression and learning S. Lall, Stanford 2011.03.03.01

Example: SLMMSE

(x, y) are uniformly distributed on the L-shaped
region A, i.e., the pdf is

f (x, y) =

{

4

3
if (x, y) ∈ A

0 otherwise

We construct a least-squares fit based on 100 data points
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Example: sample polynomial estimators

For scalar x, y, find the estimator of the form

φ(y) = a0 + a1y + a2y
2 + · · · + ady

d

that minimizes the sample MSE.

• Again, this is just a least-squares problem

• The solution uses the sample moments

E yk ≈
1

N

N
∑

i=1

yk
i
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Example: learning polynomial estimators

Suppose the data comes from the model

x = f (y) + w

where w ∼ N (0, 0.01) and f is the cubic f = 173

400
+ 18 y

25
− 51 y2

20
+ 3 y3

The data, and fits of degree 3 and 7 are below.
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Validation

As the degree d increases:

• the optimal degree d fit achieves a smaller MSE on the training data

• but the predictive ability of the model on other data becomes worse

Cross-validation: measure performance on a separate set of data, called validation data.

1 2 3 4 5 6 7 8 9 10
0.008

0.009

0.01

0.011

0.012

0.013

0.014

0.015

validation data

optimum MSE

sample MSE

training data

The above plot suggests that d = 3 is a good choice.
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Example: validation

When d is large, the model is over-fitted to the training data.
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The plot on the right shows x = f (y).


