Matrix inverses in Julia

David Zeng Keegan Go Stephen Boyd

EE263
Stanford University

October 1, 2015

Matrix inverses in Julia

- QR factorization
- inverse
- pseudo-inverse
- backslash operator

QR factorization

- the qr command finds the QR factorization of a matrix

$$
A=\operatorname{rand}(5,3)
$$

$\mathrm{Q}, \mathrm{R}=\mathrm{qr}(\mathrm{A})$

- when columns of $n \times k$ matrix A are independent, qr is same as ours
- when columns are dependent, qr is not same as ours
- $A=Q R, Q^{T} Q=I$, and $R_{i j}=0$ for $i>j$ always holds
- R can have zero or negative diagonal entries
- R is not square when A is wide

Checking linear independence with Julia's QR

- let's check if columns of A are linearly independent
- A must be tall or square
- columns are linearly independent if and only if R has no 0 diagonal entries
- check if columns of (tall or square) A are linearly independent:
a1 $=\operatorname{rand}(5)$
a2 $=\operatorname{rand}(5)$
A = [a1 a2 a1+a2] \# linearly dependent columns
Q, $R=\operatorname{qr}(A)$
\# find the entry of diagonal of R closest to 0
\# R can have negative entries
minimum(abs(diag(R)))

Inverse

- $\operatorname{inv}(\mathrm{A})$ returns the inverse matrix A^{-1}
- Julia will issue an error if
- A is not square
- A is not invertible
- you can solve square set of linear equations $A x=b$, with invertible A, using
$\mathrm{b}=\operatorname{rand}(5,1)$
$\mathrm{A}=\operatorname{rand}(5,5)$
$\mathrm{x}=\operatorname{inv}(\mathrm{A}) * \mathrm{~b}$
norm(A*x-b) \# check residual
but there is a better way, using backslash

Pseudo-inverse

- for a $m \times n$ matrix A, $\operatorname{pinv}(\mathrm{A})$ will return the $n \times m$ pseudo-inverse
- if A is square and invertible
- pinv(A) will return the inverse A^{-1}
- if A is tall with linearly independent columns
- pinv(A) will return the left inverse $\left(A^{T} A\right)^{-1} A^{T}$
- if A is wide with linearly independent rows
$-\operatorname{pinv}(\mathrm{A})$ will return the right inverse $A^{T}\left(A A^{T}\right)^{-1}$
- in other cases, pinv(A) returns an $m \times n$ matrix, but
- it is not a left or right inverse of A
- what it is is beyond the scope of this class

The backslash operator

- given A and b, the \backslash operator solves the linear system $A x=b$ for x
- for a $m \times n$ matrix A and a m-vector $b, \mathrm{~A} \backslash \mathrm{~b}$ returns a n-vector x
- if A is square and invertible
- $x=A^{-1} b$
- the unique solution of $A x=b$
- if A is tall with linearly independent columns
- $x=\left(A^{T} A\right)^{-1} A^{T} b$
- the least squares approximate solution of $A x=b$
- if A is wide with linearly independent rows
- $x=A^{T}\left(A A^{T}\right)^{-1} b$
- x is the least norm solution of $A x=b$
- in other cases, $\mathrm{A} \backslash \mathrm{b}$ returns an n-vector x, but what it means is beyond the scope of this class
- uses a factor and solve method similar to QR

Solving matrix systems with backslash

- solve matrix equation $A X=B$ for X, with A square
- with $X=\left[x_{1} \cdots x_{k}\right], B=\left[b_{1} \cdots b_{k}\right]$, same as solving k linear systems

$$
A x_{1}=b_{1}, \ldots, A x_{k}=b_{k}
$$

- $\mathrm{X}=\mathrm{A} \backslash \mathrm{B}$ solves the system, doing the right thing:
- factor A once (order n^{3})
- back substitution to get $x_{i}=A^{-1} b_{i}, i=1, \ldots, k$ (order $k n^{2}$)

