Matrices in Julia

David Zeng Keegan Go Stephen Boyd

EE263
Stanford University

October 1, 2015

Outline

Matrices

Matrix operations

Matrices

Matrices

- matrices in Julia are repersented by 2D arrays
- to create the 2×3 matrix

$$
A=\left[\begin{array}{ccc}
2 & -4 & 8.2 \\
-5.5 & 3.5 & 63
\end{array}\right]
$$

use
$\mathrm{A}=[2-48.2 ;-5.53 .563]$

- semicolons delimit rows; spaces delimit entries in a row
- size(A) returns the size of A as a pair, i.e.,

A_rows, A_cols = size(A) \# or
A_size = size(A)
\# A_rows is A_size[1], A_cols is A_size[2]

- row vectors are $1 \times n$ matrices, e.g., [4 8.7 -9]

Indexing and slicing

- A_{13} is found with $\mathrm{A}[1,3]$
- ranges can also be used: $\mathrm{A}[2,1: 2$: end $]$
- : selects all elements along that dimension
- $\mathrm{A}[:, 3]$ selects the third column
- $\mathrm{A}[2,:]$ selects the second row
- $\mathrm{A}[:$, end:-1:1] reverses the order of columns
- $A[:]$ returns the columns of A stacked as a vector, i.e., if
$\mathrm{A}=[27 ; 81]$
then A : $]$ returns
$[2,8,7,1]$

Block matrices

- the block matrix

$$
X=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]
$$

(with $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D matrices) is formed with $\mathrm{X}=[\mathrm{A} \mathrm{B;} \mathrm{C} \mathrm{D]}$

- all matrices in a row must have the same height
- the total number of columns in each row be consistent (c.f. standard math notation, in which A and C must have the same number of columns)

Common matrices

- $\mathbf{0}_{m \times n}$ is zeros (m,n)
- $m \times n$ matrix with all entries 1 is ones (m, n)
- $I_{n \times n}$ is eye (n)
- $\operatorname{diag}(x)$ is $\operatorname{diagm}(\mathrm{x})$ (where x is a vector)
- random $m \times n$ matrix with entries from standard normal distribution: $\operatorname{randn}(\mathrm{m}, \mathrm{n})$
- random $m \times n$ matrix with entries from uniform distribution on $[0,1]:$ rand (m, n)

Outline

Matrices

Matrix operations

Matrix operations

Transpose and matrix addition

- A^{T} is written A^{\prime} (single quote mark)
- +/- are overloaded for matrix addition/substraction
- for example,

$$
\left[\begin{array}{cc}
4.0 & 7 \\
-10.6 & 89.8
\end{array}\right]+\left[\begin{array}{cc}
19 & -34.7 \\
20 & 1
\end{array}\right]
$$

is written
[4.0 7; -10.6 89.8] + [19 -34.7; 20 1]
matrices must have the same size (unless one is a scalar)

Matrix-scalar operations

- all matrix-scalar operations (+,-,*) apply elementwise
- for example, matrix-scalar addition:
[1 2; 3 4] + 10
gives

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]+10\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]=\left[\begin{array}{ll}
11 & 12 \\
13 & 14
\end{array}\right]
$$

- scalar-multiplication:
[1 2; 3 4] * 10
gives

$$
10\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]=\left[\begin{array}{ll}
10 & 20 \\
30 & 40
\end{array}\right]
$$

Matrix-vector multiplication

- the * operator is used for matrix-vector multiplication
- for example,

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{l}
5 \\
6
\end{array}\right]
$$

is written
[1 2; 3 4] * [5, 6]

- for vectors x and $y, \mathrm{x}^{\prime} * \mathrm{y}$ finds their inner product
- unlike $\operatorname{dot}(\mathrm{x}, \mathrm{y}), \mathrm{x}$ ' $* \mathrm{y}$ returns a 1×1 array, not a scalar

Matrix multiplication

- * is overloaded for matrix-matrix multiplication:

$$
\left[\begin{array}{lll}
2 & 4 & 3 \\
3 & 1 & 5
\end{array}\right]\left[\begin{array}{cc}
3 & 10 \\
4 & 2 \\
1 & 7
\end{array}\right]
$$

is written
[2 43 ; 3 1 5] * [3 10; 4 2; 1 7]

- A^{k} is $\mathrm{A}^{\wedge} \mathrm{k}$ for square matrix A and nonnegative integer k

Other functions

- sum of entries of a matrix: sum (A)
- average of entries of a matrix: mean(A)
- $\max (A, B)$ and $\min (A, B)$ finds the element-wise max and min respectively
- the arguments must have the same size unless one is a scalar
- maximum (A) and minimum (A) return the largest and smallest entries of A
- norm (A) is not what you might think
- to find $\left(\sum_{i, j} A_{i j}^{2}\right)^{1 / 2}$ use norm(A[:]) or vecnorm(A)

Computing regression model RMS error

the math:

- X is an $n \times N$ matrix whose N columns are feature n-vectors
- y is the N-vector of associated outcomes
- regression model is $\hat{y}=X^{T} \beta+v$ (β is n-vector, v is scalar)
- RMS error is $\operatorname{rms}(\hat{y}-y)$
in Julia:
y_hat $=$ X'*beta +v
rms_error $=$ norm(y_hat-y)/sqrt(length(y))

