
Matrices in Julia

David Zeng Keegan Go Stephen Boyd

EE263
Stanford University

October 1, 2015

Outline

Matrices

Matrix operations

Matrices 2

Matrices

I matrices in Julia are repersented by 2D arrays

I to create the 2× 3 matrix

A =

[
2 −4 8.2

−5.5 3.5 63

]
use

A = [2 -4 8.2; -5.5 3.5 63]

I semicolons delimit rows; spaces delimit entries in a row

I size(A) returns the size of A as a pair, i.e.,

A_rows, A_cols = size(A) # or

A_size = size(A)

A_rows is A_size[1], A_cols is A_size[2]

I row vectors are 1× n matrices, e.g., [4 8.7 -9]

Matrices 3

Indexing and slicing

I A13 is found with A[1,3]

I ranges can also be used: A[2,1:2:end]

I : selects all elements along that dimension

– A[:,3] selects the third column
– A[2,:] selects the second row
– A[:,end:-1:1] reverses the order of columns

I A[:] returns the columns of A stacked as a vector, i.e., if

A = [2 7; 8 1]

then A[:] returns

[2, 8, 7, 1]

Matrices 4

Block matrices

I the block matrix

X =

[
A B
C D

]
(with A, B, C, and D matrices) is formed with

X = [A B; C D]

I all matrices in a row must have the same height

I the total number of columns in each row be consistent
(c.f. standard math notation, in which A and C must have the same
number of columns)

Matrices 5

Common matrices

I 0m×n is zeros(m,n)

I m× n matrix with all entries 1 is ones(m,n)

I In×n is eye(n)

I diag(x) is diagm(x) (where x is a vector)

I random m× n matrix with entries from standard normal
distribution: randn(m,n)

I random m× n matrix with entries from uniform distribution on
[0, 1]: rand(m,n)

Matrices 6

Outline

Matrices

Matrix operations

Matrix operations 7

Transpose and matrix addition

I AT is written A’ (single quote mark)

I +/- are overloaded for matrix addition/substraction

I for example, [
4.0 7

−10.6 89.8

]
+

[
19 −34.7
20 1

]
is written

[4.0 7; -10.6 89.8] + [19 -34.7; 20 1]

matrices must have the same size (unless one is a scalar)

Matrix operations 8

Matrix-scalar operations

I all matrix-scalar operations (+,-,*) apply elementwise

I for example, matrix-scalar addition:

[1 2; 3 4] + 10

gives [
1 2
3 4

]
+ 10

[
1 1
1 1

]
=

[
11 12
13 14

]
I scalar-multiplication:

[1 2; 3 4] * 10

gives

10

[
1 2
3 4

]
=

[
10 20
30 40

]

Matrix operations 9

Matrix-vector multiplication

I the * operator is used for matrix-vector multiplication

I for example, [
1 2
3 4

] [
5
6

]
is written

[1 2; 3 4] * [5, 6]

I for vectors x and y, x’*y finds their inner product

– unlike dot(x,y), x’*y returns a 1× 1 array, not a scalar

Matrix operations 10

Matrix multiplication

I * is overloaded for matrix-matrix multiplication:

[
2 4 3
3 1 5

] 3 10
4 2
1 7

is written

[2 4 3; 3 1 5] * [3 10; 4 2; 1 7]

I Ak is A^k for square matrix A and nonnegative integer k

Matrix operations 11

Other functions

I sum of entries of a matrix: sum(A)

I average of entries of a matrix: mean(A)

I max(A,B) and min(A,B) finds the element-wise max and min
respectively

– the arguments must have the same size unless one is a scalar

I maximum(A) and minimum(A) return the largest and smallest entries
of A

I norm(A) is not what you might think

– to find
(∑

i,j A
2
ij

)1/2
use norm(A[:]) or vecnorm(A)

Matrix operations 12

Computing regression model RMS error

the math:

I X is an n×N matrix whose N columns are feature n-vectors

I y is the N -vector of associated outcomes

I regression model is ŷ = XTβ + v (β is n-vector, v is scalar)

I RMS error is rms(ŷ − y)

in Julia:

y_hat = X’*beta + v

rms_error = norm(y_hat-y)/sqrt(length(y))

Matrix operations 13

	Matrices
	Matrix operations

