Vectors in Julia

Keegan Go David Zeng Stephen Boyd

EE263 Stanford University

October 1, 2015

Vectors in Julia

main topics:

- how to create and manipulate vectors in Julia
- how Julia notation differs from math notation

Scalars

- represented by two types, Int64 and Float64
 - a = 1 b = 0.5
- usually the types work together correctly, for example

```
1 + 0.5
```

produces a float

Outline

Vectors

Vector operations

Norm and distance

Vectors

Vectors

- vectors are represented by arrays in Julia
- ▶ to create the 3-vector

$$x = (8, -4, 3.5) = \begin{bmatrix} 8\\ -4\\ 3.5 \end{bmatrix}$$

use

- x = [8, -4, 3.5]
- (x = [8; -4; 3.5] also works)

watch out for similar looking expressions

- (8,-4,3.5) and {8,-4,3.5} mean something else
- [8 -4 3.5] is a row vector (later)
- length of an array: length(x)

Indexing and slicing

- indexes run from 1 to n: x_2 is x[2]
- > can also set an element, e.g., x[3] = 10.5
- use a range to select more than one element
- x[2:3] selects the second and third elements
- to select every other element use x[1:2:end]

Block vectors

▶ to form a stacked vector like

$$a = (b, c) = \left[\begin{array}{c} b\\c\end{array}\right]$$

(with b and c vectors)

can mix vectors and scalars:

$$a = [b, 2, c, -6]$$

Vectors

Basic functions for arrays

- sum of (the entries of) a vector: sum(x)
- mean of the entries $(\mathbf{avg}(x))$: mean(x)
- ▶ $\mathbf{0}_n$ is zeros(n)
- ▶ $\mathbf{1}_n$ is ones(n)

Creating unit vectors

- form e_3 with length 10
- \blacktriangleright create a zero vector of size 10 then set the third element to 1

$$e_3 = zeros(10); e_3[3] = 1;$$

Vectors

Julia array types

- an array's type is the most specific given its elements
- ▶ consider arr1 = [100, 7, -83] and arr2 = [4.5, -10, 13]
- arr1 is an Int array while arr2 is a Float array
- arr1[2] = 0.1 will error because arr1 can only store Ints
- ▶ to make arr1 a Float array, give one entry a decimal point arr1 = [100., 7, -83]

List of vectors

- to form a list with vectors a, b, and c: vector_list = Any[a,b,c]
- the second vector in this list is vector_list[2]
- to access an element in a vector: vector_list[2][3]

Notation

- b do not mix mathematical notation with Julia notation
- notations are not compatible, for example

```
v = (0, 1, 1)
```

produces a tuple, not an array (vector)

similarly,

```
v = [1, 10, 7]
```

defines an array (vector) in Julia, but isn't mathematically correct

Outline

Vectors

Vector operations

Norm and distance

Vector operations

Vector addition and subtraction

vector addition uses +, for example

$$\left[\begin{array}{c}1\\2\\3\end{array}\right]+\left[\begin{array}{c}4\\5\\6\end{array}\right]$$

is written

[1, 2, 3] + [4, 5, 6]

subtraction uses -

the arrays must have the same length (unless one is scalar)

Vector operations

Scalar-vector addition

- ▶ in Julia, a scalar and a vector can be added
- the scalar is added to each entry of the vector [2, 4, 8] + 3

gives (in mathematical notation)

$$\left[\begin{array}{c}2\\4\\8\end{array}\right] + 3\mathbf{1} = \left[\begin{array}{c}5\\7\\11\end{array}\right]$$

Scalar-vector multiplication

- scalar-vector multiplication uses *
- ▶ for example,

$$(-2)\left[\begin{array}{c}1\\9\\6\end{array}\right]$$

is written

-2 * [1, 9, 6]

the other order gives the same result:

[1, 9, 6] * -2

Inner product

- inner product a^Tb is written as dot(a,b) which returns a scalar (Int or Float)
- \blacktriangleright a and b must have the same length

Outline

Vectors

Vector operations

Norm and distance

Norm and distance

▶ the norm $||x|| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$ is written norm(x)

RMS value

$$\mathbf{rms}(x) = \sqrt{\frac{1}{n} \left(x_1^2 + \dots + x_n^2 \right)} = \frac{\|x\|}{\sqrt{n}}.$$

Standard deviation

standard deviation is defined as

$$\mathbf{std}(x) = \frac{\|x - \mathbf{avg}(x)\mathbf{1}\|}{\sqrt{n}}$$

 which can be expressed as std_of_x = norm(x - mean(x))/sqrt(length(x))
 warning: the Julia function std uses the slightly different definition

$$\mathbf{std}(x) = \frac{\|x - \mathbf{avg}(x)\mathbf{1}\|}{\sqrt{n-1}}$$

Angle

 \blacktriangleright the angle between two vectors a and b is

$$\angle(a,b) = \arccos\left(\frac{a^Tb}{\|a\| \, \|b\|}\right)$$

can be expressed as angle_a_b = acos(dot(a,b)/(norm(a)*norm(b)))

Nearest neighbor example

```
# Compares vectors in vector_list against a_vector
# and returns the index of the one which is closest
function nearest_neighbor(vector_list, a_vector)
  closest_distance = Inf
  closest index = 0
  for i in 1:length(vector_list)
    ith_distance = norm(vector_list[i] - a_vector)
    if (ith_distance < closest_distance)</pre>
      closest_distance = ith_distance
      closest index = i
    end
  end
  return closest index
end
```