Vectors in Julia

Keegan Go David Zeng Stephen Boyd

EE263
Stanford University

October 1, 2015

Vectors in Julia

main topics:

- how to create and manipulate vectors in Julia
- how Julia notation differs from math notation

Scalars

- represented by two types, Int64 and Float64
$a=1$
$\mathrm{b}=0.5$
- usually the types work together correctly, for example $1+0.5$
produces a float

Outline

Vectors

Vector operations

Norm and distance

Vectors

- vectors are represented by arrays in Julia
- to create the 3 -vector

$$
x=(8,-4,3.5)=\left[\begin{array}{c}
8 \\
-4 \\
3.5
\end{array}\right]
$$

use

$$
\begin{aligned}
& x=[8,-4,3.5] \\
& (x=[8 ;-4 ; 3.5] \text { also works })
\end{aligned}
$$

- watch out for similar looking expressions
- ($8,-4,3.5$) and $\{8,-4,3.5\}$ mean something else
- [8-4 3.5] is a row vector (later)
- length of an array: length (x)

Indexing and slicing

- indexes run from 1 to n : x_{2} is $\mathrm{x}[2]$
- can also set an element, e.g., $\mathrm{x}[3]=10.5$
- use a range to select more than one element
- $\mathrm{x}[2: 3]$ selects the second and third elements
- to select every other element use $\mathrm{x}[1: 2: \mathrm{end}]$

Block vectors

- to form a stacked vector like

$$
a=(b, c)=\left[\begin{array}{l}
b \\
c
\end{array}\right]
$$

(with b and c vectors)

$$
\mathrm{a}=[\mathrm{b} ; \mathrm{c}]
$$

- can mix vectors and scalars:
$a=[b, 2, c,-6]$

Basic functions for arrays

- sum of (the entries of) a vector: sum (x)
- mean of the entries $(\operatorname{avg}(x))$: mean (x)
- 0_{n} is zeros(n)
- 1_{n} is ones(n)

Creating unit vectors

- form e_{3} with length 10
- create a zero vector of size 10 then set the third element to 1 e_3 = zeros(10); e_3[3] = 1;

Julia array types

- an array's type is the most specific given its elements
- consider arr1 $=[100,7,-83]$ and $\operatorname{arr} 2=[4.5,-10,13]$
- arr1 is an Int array while arr2 is a Float array
- $\operatorname{arr} 1[2]=0.1$ will error because arr1 can only store Ints
- to make arr1 a Float array, give one entry a decimal point $\operatorname{arr} 1=[100 ., 7,-83]$

List of vectors

- to form a list with vectors a, b, and c : vector_list = Any [a, b, c]
- the second vector in this list is vector_list [2]
- to access an element in a vector: vector_list [2] [3]

Notation

- do not mix mathematical notation with Julia notation
- notations are not compatible, for example $\mathrm{v}=(0,1,1)$
produces a tuple, not an array (vector)
- similarly,

```
v = [1, 10, 7]
```

defines an array (vector) in Julia, but isn't mathematically correct

Outline

Vectors

Vector operations

Norm and distance

Vector addition and subtraction

- vector addition uses + , for example

$$
\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]+\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right]
$$

is written

$$
[1,2,3]+[4,5,6]
$$

- subtraction uses -
- the arrays must have the same length (unless one is scalar)

Scalar-vector addition

- in Julia, a scalar and a vector can be added
- the scalar is added to each entry of the vector
[2, 4, 8] + 3
gives (in mathematical notation)

$$
\left[\begin{array}{l}
2 \\
4 \\
8
\end{array}\right]+3 \mathbf{1}=\left[\begin{array}{c}
5 \\
7 \\
11
\end{array}\right]
$$

Scalar-vector multiplication

- scalar-vector multiplication uses *
- for example,

$$
(-2)\left[\begin{array}{l}
1 \\
9 \\
6
\end{array}\right]
$$

is written
$-2 *[1,9,6]$

- the other order gives the same result:
$[1,9,6] *-2$

Inner product

- inner product $a^{T} b$ is written as $\operatorname{dot}(a, b)$
which returns a scalar (Int or Float)
- a and b must have the same length

Outline

Vectors

Vector operations

Norm and distance

Norm and distance

- the norm $\|x\|=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}}$ is written norm(x)
- $\operatorname{dist}(x, y)=\|x-y\|$ is written norm ($\mathrm{x}-\mathrm{y}$)

RMS value

$-\operatorname{rms}(x)$ is defined as

$$
\operatorname{rms}(x)=\sqrt{\frac{1}{n}\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)}=\frac{\|x\|}{\sqrt{n}}
$$

- can be expressed as

$$
\text { rms_x }=\operatorname{norm}(x) / s q r t(l e n g t h(x))
$$

Standard deviation

- standard deviation is defined as

$$
\operatorname{std}(x)=\frac{\|x-\operatorname{avg}(x) \mathbf{1}\|}{\sqrt{n}}
$$

- which can be expressed as
std_of_x = norm(x - mean(x))/sqrt(length(x))
- warning: the Julia function std uses the slightly different definition

$$
\operatorname{std}(x)=\frac{\|x-\operatorname{avg}(x) \mathbf{1}\|}{\sqrt{n-1}}
$$

Angle

- the angle between two vectors a and b is

$$
\angle(a, b)=\arccos \left(\frac{a^{T} b}{\|a\|\|b\|}\right)
$$

- can be expressed as

Nearest neighbor example

```
# Compares vectors in vector_list against a_vector
# and returns the index of the one which is closest
function nearest_neighbor(vector_list, a_vector)
    closest_distance = Inf
    closest_index = 0
    for i in 1:length(vector_list)
    ith_distance = norm(vector_list[i] - a_vector)
    if (ith_distance < closest_distance)
        closest_distance = ith_distance
        closest_index = i
        end
    end
    return closest_index
end
```

