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3 Inner Products, Orthonormal Bases,

and Convergence

We’d like to understand how bases work for infinite-dimensional vector spaces. The caveat
is that to have a basis for such a space we will need infinitely many basis vectors, and we
want to define the span of a set of vectors as the set of linear combinations, something like

span(u0, u1, . . . ) =

{

∞
∑

i=0

aiui

∣

∣

∣

∣

ai ∈ R for all i ∈ Z+

}

won’t work . . .

This won’t work, since we’ll need to know when such infinite sums converge, and they
probably will not converge for all possible real sequences a0, a1, . . . .

Finitely non-zero sequences. Define the vector space

ℓfnz =
{

x : Z+ → R
∣

∣ there exists N such that xi = 0 for all i ≥ N
}

which consists of all discrete-time signals which are zero after some time. Note that signals
may have a different numbers of nonzero components.

Now consider the four vector spaces ℓe, ℓ∞, ℓ2 and ℓfnz. One might think that a reasonable
choice of basis for any of them is

{e0, e1, e2, . . . }
where ei is the usual vector which has a 1 in the i’th component and zero everywhere else. But
this cannot be a basis for all of them; since they are clearly very different spaces. Somehow
our notion of basis needs to account for the difference between these spaces. We’ll need two
things; a notion of convergence and a notion of orthogonality, and will focus on finding a
basis for ℓ2.

3.1 Convergence

Suppose V is a normed vector space. A sequence x0, x1, x2, . . . where each xi ∈ V is said to
converge to a ∈ V if

lim
k→∞

‖xk − a‖ = 0

We say the converges with respect to the norm in V . For example, consider the sequence in
L2([0,∞), R)

xk(t) = e−kt

converges to 0 in the L2 norm. Notice that it does not converge with respect to the ∞-norm,
and it converges pointwise everywhere except at t = 0.

A sequence may converge in L2([0, 1]) without converging pointwise. We’ll construct a
sequence of functions x0, x1, . . . ∈ L2 as follows. Let m be the integer such that 2m ≤ n <
2m+1. Divide the interval [0, 1] into 2m equal sub-intervals, and let xn(t) = 1 for t in the
(n − 2m + 1)’th sub-interval and be zero elsewhere. This defines xn for all n ∈ Z+, and
xn → 0 in L2 but does not converge pointwise.

For the converse example, let yn be
√

n on the interval (0, 1/n). Then ‖yn‖2 = 1 for all
n but yn(t) → 0 for all t.
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3.2 Open and Closed Sets

Define the open unit ball around x ∈ V of radius ε > 0 by

Bε(x) = { y ∈ V | ‖x − y‖ < ε }

Suppose S is a subset of V . A point x ∈ S is called an interior point of S if there exists
ε > 0 such that Bε(x) ∈ S. A point x ∈ V is called a closure point of S if for all ε > 0

Bε(x) ∩ S 6= ∅

Note that a closure point of S may be outside S.
A set S is called open if every element of S is an interior point. It is called closed if

every closure point of S is in S. Basic properties are as follows.

(i) S is closed if and only if its complement {x ∈ V | x 6∈ S } is open.

(ii) If S and T are open, then so is S ∩ T and S ∪ T .

(iii) Suppose Q is a set of subsets of V , and each element of Q is open. Then the union of
the elements of Q is open. In other words, a union of infinitely many (even uncountably
many) open sets is open. The same is not true for closed sets.

The norm on a vector space determines which sets are open, and determines which
sequence converge. In fact once we know which sequences converge we know which sets are
open, and vice versa, as follows.

Theorem 1. A set S is closed if and only if every convergent sequence with elements in S
has its limit in S.

In C
n every subspace is closed, but in infinite dimensional spaces that is not the case.

Consider ℓfnz as a subspace in ℓ2. Consider the sequence

xk =

(

1,
1

2
,
1

3
, . . . ,

1

k
, 0, 0, . . .

)

where each xk ∈ ℓfnz. In the space ℓ2, the sequence x0, x1, x2, . . . converges to a ∈ ℓ2. But
the limit a is the sequence

a =

(

1,
1

2
,
1

3
, . . . ,

)

which is not in ℓfnz. Another way to see this is to pick an element x ∈ ℓ2 which is not in ℓfnz,
and show that x is a closure point of ℓfnz.

Closed subspaces are useful because we often use iterative algorithms to find minimum
solutions to linear equations. If the subspace of solutions to the linear equations is closed,
then we can deduce that an algorithm which provides an Cauchy sequence of approximately
optimal solutions x0, x1, . . . is actually converging to a solution.
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3.3 Completeness

A sequence x0, x1, . . . is called Cauchy if for all ε > 0 there exists K such that

n,m > K =⇒ ‖xn − xm‖ ≤ ε

This is often written as
lim

n,m→∞

‖xn − xm‖ = 0

A vector space is called complete if every Cauchy sequence converges. A complete normed
space is called a Banach Space . The spaces C

n, ℓ2 and L2 are complete.
For subspaces, we can also define completeness; a subspace S is complete if every Cauchy

sequence in S converges to a point in S. Then in a Banach space, a subspace is complete if
and only if it is closed.

3.4 The Inner Product

Suppose V is a vector space. An inner product is a function g : V ×V → R which satisfies
the four conditions below. For two vectors x, y ∈ V , instead of writing g(x, y) we write

〈x, y〉 = g(x, y)

Other notations are used in some books, such as (x|y).

(i) 〈x, y〉 = 〈y, x〉

(ii) 〈x, x〉 = 0 if and only if x = 0

(iii) 〈x, x〉 ≥ 0

(iv) 〈x, αy + βz〉 = α〈x, y〉 + β〈x, z〉

Note that on a complex vector space, 〈x, y〉 is linear with respect to y, but not quite linear
with respect to x, since 〈αx, y〉 = α〈x, y〉. Some authors use the opposite convention, and
make the inner product linear with respect to the first argument.

If 〈x, y〉 = 0 we say x is perpendicular to y and write x ⊥ y. We define

‖x‖2 = 〈x, x〉

and this is a norm. A standard property is the Cauchy-Schwartz inequality

|〈x, y〉| ≤ ‖x‖‖y‖

Notice that here we’ve defined the norm starting with the inner product. This is not
always possible, that is, there are some norms which for which ‖x‖2 6= 〈x, x〉 for any inner
product. One such norm is the ∞-norm. However, the 2−norm is constructed from an inner
product. On C

n, the inner product is

〈x, y〉 = x∗y
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where x∗ is the complex-conjugate of the transpose of x. On L2([0, 1]) the inner product is

〈x, y〉 =

∫ 1

0

x(t)y(t) dt

and on ℓ2(Z+) the inner product is

〈x, y〉 =
∞

∑

t=0

xtyt

The inner-product is a continuous function because

4〈x, y〉 = ‖x + y‖2 − ‖x − y‖2 − j‖x + jy‖2 + j‖x − jy‖2

The inner-product provides generalizes the scalar product to arbitrary vector spaces.
A complete inner-product space is called a Hilbert Space .

3.5 The Adjoint

Suppose U and V are Hilbert spaces, each with its own inner-product, and A : U → V is a
bounded linear map. Then there exists a unique linear map A∗ : V → U such that for all
x ∈ U and y ∈ V

〈y,Ax〉 = 〈A∗y, x〉
The map A∗ is called the adjoint of A. Existence and uniqueness are straightforward to
prove; see, for example, Luenberger or Young. Notice that in the above equation the inner-
product on the left-hand side is that in V , and the inner-product on the right-hand side is
that in U . The adjoint generalizes the transpose from matrices to more general linear maps.
Some key properties are

(i) ‖A‖ = ‖A∗‖

(ii) (AB)∗ = B∗A∗

(iii) (A∗)∗ = A

(iv) (αA + βB)∗ = αA∗ + βB∗

A map T : U → U is called Hermitian or self-adjoint if T ∗ = T , and unitary if
T ∗T = I and TT ∗ = I.
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