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4 Fourier Series

4.1 Orthonormal families

Suppose H is a Hilbert space, and we have a sequence of vectors φ0, φ1, · · · ∈ H which satisfy

〈φi, φj〉 = δij

then we call the sequence φ0, φ1, . . . an orthonormal family .
We’d like to write a vector x ∈ H in terms of the basis H, and to do this we need to

know about convergence.

Theorem 1. Suppose x0, x1, . . . is a sequence in C. The series

∞
∑

k=0

φkxk

converges if and only if x ∈ ℓ2.

Proof. Define the partial sums

sn =
n

∑

k=0

φnxn and tn =
n

∑

k=0

|xk|
2

Notice that x ∈ ℓ2 if and only if the series

∞
∑

k=0

|xk|
2

converges which holds if and only if the sequence t0, t1, . . . converges, which in turn holds if
and only if it is Cauchy. Similarly, the series

∞
∑

k=0

φkxk

converges if and only if the sequence s0, s1, . . . converges, which holds if and only if it is
Cauchy.

Suppose m > n, then we have

‖sm − sn‖
2

2 =
m

∑

k=n+1

|xk|
2

= ‖tm − tn‖
2

2

and so the sequence s is Cauchy if and only if t is Cauchy, which holds if and only if x ∈ ℓ2,
as desired.

So we can define the linear map

U : ℓ2(Z+) → H
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by

Ux =
∞

∑

k=0

φkxk

Theorem 2. Some properties of U .

(i) U is bounded

(ii) The adjoint of U is a map U∗ : H → ℓ2, given by

(U∗y)k = 〈φk, y〉

(iii) U∗U = I, that is, U is an isometry.

Proof. To see part (i) we just evaluate the norm

‖Ux‖2 =

∥

∥

∥

∥

∞
∑

k=0

φkxk

∥

∥

∥

∥

2

=

∥

∥

∥

∥

lim
n→∞

n
∑

k=0

φkxk

∥

∥

∥

∥

2

= lim
n→∞

∥

∥

∥

∥

n
∑

k=0

φkxk

∥

∥

∥

∥

2

= lim
n→∞

n
∑

k=0

|xk|
2

= ‖x‖2

That is, ‖Ux‖ = ‖x‖ for all x ∈ ℓ2, and hence ‖U‖ = 1.
For part (ii), we have that by definition the adjoint is the unique linear map satisfying

〈y, Ux〉 = 〈y,

∞
∑

k=0

φkxk〉

=
∞

∑

k=0

〈y, φk〉xk

where we used continuity of the inner-product. Hence

〈y, Ux〉 = 〈z, x〉

where z ∈ ℓ2 is
zk = 〈φk, y〉

To see part (iii), we have

(U∗Ux)i = 〈φi,

∞
∑

j=1

φjxj〉

=
∞

∑

j=1

〈φi, φj〉xj
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using continuity of the inner-product. Hence

(U∗Ux)i = xi

as desired.

An orthonormal family is called an orthonormal basis for H if for every f ∈ H there
exists a sequence x ∈ ℓ2 such that

f =
∞

∑

k=0

φkxk

Theorem 3. The orthonormal family φ0, φ1, . . . is an orthnormal basis if and only if UU∗ =
I.

Proof. First we’ll show the if direction. Suppose UU∗ = I. Then

f = UU∗f =
∞

∑

k=0

φk(U
∗f)k

which gives f as a linear combination of the basis functions. To show the converse, suppose
there exists the desired x0, x1, . . . so that f is

f =
∞

∑

k=0

φxxk

This means f = Ux and therefore U∗f = U∗Ux = x. Hence f = UU∗f . Since φ0, φ1, . . . is
a basis such an expansion exists for every f ∈ H, hence UU∗ = I.

4.2 Fourier Series

Consider the space L2(T) of functions mapping T to C with inner product

〈f, g〉 =
1

2π

∫ π

−π

f(ejθ)g(ejθ) dθ

Theorem 4. The sequence of functions . . . , φ−1, φ0, φ1, . . . where φk : T → C is given by

φk(e
jθ) = ejkθ

is an orthonormal basis for L2(T).

Proof. This is not too hard a proof, but would take us too far from our desired course,
so we’ll omit it. Orthonormality is easy; all we would need to show is completeness. See
e.g. p. 45 of Young, or p. 61 of Luenberger.

This result dates back to 1907, with the work of Riesz and Fischer. You have probably
seen results on convergence of Fourier series before. The simplest results state that the
partial Fourier sums of f converge pointwise if f is twice continuously differentiable. The
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famous result of Carleson in 1966 is that the Fourier series of any L2 function converges
pointwise almost everywhere.

Notice that we can also write
φk(λ) = λk

for λ ∈ T. We can also write the inner product as the complex integral

〈f, g〉 =
1

2π

∫

T

f(λ)g(λ)λ−1 dλ

We’ll define the map F : ℓ2(Z) → L2(T) to be

Fx =
∞

∑

k=−∞

xkφk

Then F ∗ takes a function on T and returns the coefficients of its Fourier series. The map
F , which is the inverse Fourier transform, is sometimes called the λ-transform .

4.3 Examples and rational functions

Define for convenience the open unit disk

D = {λ ∈ C | |λ| < 1 }

and its closure
D̄ = {λ ∈ C | |λ| ≤ 1 }

Some examples. If |a| < 1 then

x = (. . . , 0, 0, 0, 1 , a, a2, a3, . . . ) =⇒ (Fx)(λ) =
1

1 − aλ

On the other hand, if |a| > 1 then

x = (. . . ,−a−3,−a−2,−a−1, 0 , 0, 0, . . . ) =⇒ (Fx)(λ) =
1

1 − aλ

This gives us the Fourier series for all rational functions without poles on T, by partial
fractions. If f is rational but has a pole on T, then it is not square-integrable, that is, it is
not an element of L2(T), and so it has no Fourier series expansion. Notice also that if f is
rational and has no poles in D̄, then its Fourier series x is zero on negative time, and is a
stable exponential on positive time. On the other hand, if f has no poles outside D then its
Fourier series x is zero on positive time, and is a stable exponential in negative time. There

are no unstable signals in ℓ2, and we cannot use the Fourier theory to represent

any unstable signals.

This is a general feature of Fourier series, and there is an exactly parallel phenomena in
continuous time. By working with square-integrable signals, we lose the ability to represent
unstable signals. However, we gain the ability to represent functions which are nonnegative
on both positive and negative time, which is highly useful for signal processing, where we’d
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like to use impulses responses which are not necessarily causal. And we gain the ability to
formulate and solve optimal control problems, which are infinite dimensional least-squares
problems. We’ll deal with unstable control systems by stabilizing them first, and then
analyzing their norm.

If f is a rational function, we call it stable if all of its poles are outside the closed
unit disk. You may have seen the opposite definition when using the z-transform . If
x : Z+ → C, it’s z-transform is

g(z) =
∞

∑

k=0

xkz
−k

For x ∈ ℓ2 with f = Fx we clearly have f(λ) = g(λ−1), hence if p is a pole of the z-transform
then p−1 is a pole of the Fourier transform f .

4.4 The Hardy Space H2

So far we have seen that there is a one-to-one isometric map between sequences x ∈ ℓ2(Z)
and functions f ∈ L2(T) given by f = Ux, which is just

f =
∞

∑

k=−∞

xkφk

which converges in the L2 norm on the complex unit circle. Even though φk(λ) = λk for
λ ∈ T, in general it doesn’t make sense to write the sum as

∞
∑

k=−∞

xkλ
k

since the sum on the right-hand side may not converge for some λ ∈ T.
But there are times when we can say something about the convergence of this power

series, for some λ. One such time is when xk = 0 for all k < 0. In other words, we consider
those sequences which are zero for negative time, which we may as well view as functions
in ℓ2(Z+). Since ℓ2(Z+) is a subspace of ℓ2(Z), the image of ℓ2(Z+) under F is therefore a
subspace of L2(T). It is called H̃2, and F gives a bijection between ℓ2(Z) and H̃2.

In fact if x ∈ ℓ2(Z+) (notice the + subscript) then the power series also converges
absolutely inside the complex unit disk, as follows.

Theorem 5. Suppose x ∈ ℓ2(Z+). Then the power series

∞
∑

k=0

xkλ
k

converges absolutely if |λ| < 1.

Proof. Since x ∈ ℓ2, there exist M such that for all k ≥ 0 the inequality |xk| < M holds.
Let sn be the partial sum

sn =
n

∑

k=0

|xkλ
k|
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Then we have

sn ≤ M

n
∑

k=0

|λk|

≤ M

∞
∑

k=0

|λk|

Hence the sequence s0, s1, . . . is increasing and bounded, and so convergent.

This leads us to define the Hardy space H2 as follows.

H2 =

{

f : D → C | there exists x ∈ ℓ2(Z) such that f(λ) =
∞

∑

k=0

xkλ
k

}

From complex analysis, we know that every function f ∈ H2 is analytic on D, since it has
a power series which is absolutely convergent on D from Theorem 5, and the power series is
unique. So we also have a bijection between ℓ2(Z+) and H2.

So we can start with a function f ∈ H2, can construct it’s power series x ∈ ℓ2(Z+), and
then construct g ∈ H̃2 by g = Fx. Or we can start with g ∈ H̃2, construct it’s Fourier
series x ∈ ℓ2(Z+), and then let f be the corresponding analytic function in H2. So we have
a bijection between H2 and H̃2. One might guess that f and g are related, and in fact it can
be proved that

lim
r→1−

f(rejθ) = g(ejθ) for almost all θ ∈ [0, 2π]

To summarize, every square-summable discrete-time signal x corresponds to a unique
square-integrable function g on the unit circle. But if in addition the signal x is zero on
negative time then there is also a corresponding unique analytic function f on the open unit
disk, and f and g meet up nicely on the circle. In particular, f is analytic on D implies that
it has no poles on D. If f and g are rational, then they will be the same rational.
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