2008.10.07.01

1 Norms and Vector Spaces

Suppose we have a complex vector space V. A norm is a function f : V' — R which satisfies
(i) f(z)>0forallz eV
(i) f(z+y) < fz)+ f(y) forallz,y eV
(iii) f(A\x) =|A|f(z) forall A e Cand z € V
(iv) f(z) =0if and only if x =0

Property (ii) is called the triangle inequality, and property (iii) is called positive homgeneity.
We usually write a norm by |[z||, often with a subscript to indicate which norm we are
refering to. For vectors x € R” or x € C" the most important norms are as follows.

e The 2-norm is the usual Euclidean length, or RMS value.

NG
lalls = (ZW)
=1

e The 1-norm .
BRI
i=1

e For any integer p > 1 we have the p-norm
"N
Izl = (D _lasl”
i=1

e The co-norm, also called the sup-norm. It gives the peak value.

el = e

This notation is used because ||z||oo = lim, o [|2||,-

One can show that these functions each satisfy the properties of a norm. The norms are also

nested, so that
[#]le0 < [[zll2 < [lz]l1

This is easy to see; just sketch the unit ball
{zeR|||lz]| <1}

for each of the norms, and notice that they are nested.
These norms also satisfy pairwise inequalities; for example

x|l < nl|z] for all z € C"

In fact, in finite-dimensional vector spaces such inequalities hold between any pair of norms.
So if one designs a controller or an estimator to make a particular norm small, then one is
simultaneously squeezing all the other norms also (but not necessarily optimally).
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1.1 Infinite-dimensional vector spaces

Vector spaces are defined by the usual axioms of addition and scalar multiplication. The
important spaces are as follows. Note that there are real-valued versions of all of these
spaces.

Sequence space. Define the space
be={x:Zy —C}

This is an infinite-dimensional vector space. (The subscript e stands for extended, and we’ll
see why that’s used later in the course.) We think about this vector space as the space of
sequences, or of signals in discrete-time.

The square-summable sequence space ¢;. We need a norm to make ¢, useful. For
some vectors x € ¢, we can define

% 3
ol = (Xlei?)
i=0
but there are of course vectors x € ¢, for which the series doesn’t converge. Define {5 to be
those = for which it does converge
Uy ={x €l ||z] is finite }

For example, the signal z(k) = a* is an element of /5 if and only if |a| < 1. The perhaps

surprising fact is that /5 is a subspace of £.. Recall that a set .S is a subspace if and only if
(i) z+ye Sforall z,y € S
(i) e € Sforallz € Sand A € C

that is, a subspace is a set which is closed under addition and scalar multiplication. Closure
under scalar multiplication is easy; let’s prove closure under addition.

Theorem 1. Suppose x,y € l5. Then v+ 1y € {s and
[l +yll < flzll + llyll
Proof. We have

2 2 2
(Zrmyﬁ) < (Zw) +(Zry¢\2)
1=0 1=0 1=0
< llz] + Iyl

where the first inequality follows from the triangle inequality for vectors in C"*1. We there-
fore have that the partial sum
n
Sn = Z‘xz +yil®
i=0
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is bounded as a function of n, and since it is non-decreasing and bounded it must converge.
Therefore the series
oo
2
g |zi + yil
i=0

converges, and x + y € f5. The triangle inequality also follows. [

Variants of /,. We'll have need for many variants of /5, such as

e bi-infinite sequences

mm:{wzﬁc

oo
Z |z;]? is ﬁnite}

1=—00

e vector-valued sequences

€2<Z+7(Cn) = {:L‘ : Z+ — (CTL

oo
E:Wﬂ§$ﬁmm}

1=0

e general sequences. Let D C Z™ and

E:Wﬂgmﬁmm}

€D

lH(D,C") = {x:D—>C”

¢, spaces. The general ¢, spaces are defined similarly, with the p-norm replacing the 2-
norm. In particular, for z : Z, — C the co-norm is defined as

[#]lec = sup|x(t)

teZy

The ¢, spaces are nested; that is
51 C gQ - Eoo

The L, function spaces. Define the vector space

Ly([0,1]) = {x:[0,1] - C | z is Lebesgue measurable and ||z||2 is finite }

o= ([ letor dt)é

The technical requirement of Lebesgue measurability will not be a concern for us. The most
common Ly space fwor us will be

where the norm is

Ly([0,00)) = {z:]0,00) — C | x is Lebesgue measurable and ||z||2 is finite }
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For example, z(t) = e™ is an element of Ly([0,00)) if and only if Re(a) < 0. More generally,
suppose D C C™ and define

Lo(D,C™)={f:D — C™| || fl|2 is finite }

where the norm is

1= ([ il r)

The most common cases are D = [0,1], D = [0,00) and D = (—o0,00). Again, one can
prove that Lo is a vector space; that is, it is closed under addition and scalar multiplication.

The L, function spaces. These are defined similarly, with

el = ( [ 1|a:<t>|pdt)’1’

2]l = esssup|f(t)|
teD

for p > 1 and

Here ess sup means essential supremum; it is the sup of f over all but a set of measure zero.
Again, the measure theory won’t matter to us. As before, for functions of time we think
about the 2-norm as the RMS value of the signal and the co-norm as its peak. We have the
nesting

Leoo([0,1]) € Ly([0,1]) € La([0,1])

Note that this nesting doesn’t hold for L,(R). There is no constant K such that for all
x € Ly([0,00)) N Luo([0, 00))
lzll2 < K[zl

nor is there any constant K such that
[2]loe < KTJl2

Unlike finite-dimensional spaces, such inequalities do not hold between any pair of norms.
So minimizing the 2-norm is very different from minimizing the co-norm.

Functions on the complex plane. An important space in control theory is RLs, the
space of rational functions with no poles on the complex unit circle. This is a vector

space, and we use the norm
1
1 21 ) 9 5
= — " ag
1= (55 [ st as)

Similarly, the space RH, is the space of rational functions with no poles in I, where
D={zeC||z|<1}

Again, this is a vector space, with the same norm as RLs.
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1.2 Properties of the norm
Suppose V is a normed space; that is a vector space equipped with a norm.

Lemma 2. For any x,y € V we have

2]l = llyll < [l = yli

Proof. This is a consequence of the triangle inequality. We have

[zl = 1lyll = llz =y +yll = llyll < lle =yl + llyll = lyll = [z =yl

Lemma 3. The norm is continuous.

Proof. At any point a € V', we have
lla + [l — [lall| < [l

from Lemma 2. Hence we can make the norm of a + z as close as we need to ||a|| by making
||| small. Hence the norm is continuous at a, and this is true for all a € V. n

Another important property is that every norm is a convex function, and has convex
sublevel sets.

1.3 Linear maps
Suppose U and V are normed spaces; Consider the set of all possible linear maps
Finear (U, V) ={f:U — V| f is linear }
This is a vector space. We define the induced norm of a linear map A : U — V by
) = sup 1271
a0 |||

Note that the norm of Az is the norm in the space V', and the norm of z is the norm in the
space U, and these norms may be different. We then define

LU, V) = {A € Finea(U, V) | ||A]| is finite }

If || A is finite, then A is called a bounded linear map, otherwise A is called unbounded.
The space L(U, V) is called the space of bounded linear maps from U to V. It is easy to see

that the norm is also given by
|A|l = sup || Az|]
flzl<1

If U and V are finite dimensional, then every linear map A : U — V is bounded, because
in finite dimensional spaces the unit ball is compact. Also the map x — Ax is continuous,
since we can write it in a basis as matrix multiplication, and the norm is continuous, so the
composition z +— Ax is also continuous. Hence the induced norm of A is the maximum of a
continuous function over a compact set, and so the maximum is attained.
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The induced 2-norm. Suppose A € R™*" is a matrix, which defines a linear map from
R™ to R™ in the usual way. Then the induced 2-norm of A is

[A]l = o1(A)

where o7 is the largest singular value of the matrix A. This is also called the spectral norm

of A, and occasionally written as
[[Alli2

where 72 stands for induced 2-norm.

The induced oco-norm. Suppose A € R™*". The induced oo-norm of A is

[[A]lice = max > 1451
J



