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1 Norms and Vector Spaces

Suppose we have a complex vector space V . A norm is a function f : V → R which satisfies

(i) f(x) ≥ 0 for all x ∈ V

(ii) f(x + y) ≤ f(x) + f(y) for all x, y ∈ V

(iii) f(λx) = |λ|f(x) for all λ ∈ C and x ∈ V

(iv) f(x) = 0 if and only if x = 0

Property (ii) is called the triangle inequality, and property (iii) is called positive homgeneity.
We usually write a norm by ‖x‖, often with a subscript to indicate which norm we are
refering to. For vectors x ∈ R

n or x ∈ C
n the most important norms are as follows.

• The 2-norm is the usual Euclidean length, or RMS value.

‖x‖2 =

( n
∑

i=1

|xi|
2

)
1

2

• The 1-norm

‖x‖1 =
n

∑

i=1

|xi|

• For any integer p ≥ 1 we have the p-norm

‖x‖p =

( n
∑

i=1

|xi|
p

)
1

p

• The ∞-norm , also called the sup-norm. It gives the peak value.

‖x‖∞ = max
i

|xi|

This notation is used because ‖x‖∞ = limp→∞‖x‖p.

One can show that these functions each satisfy the properties of a norm. The norms are also
nested, so that

‖x‖∞ ≤ ‖x‖2 ≤ ‖x‖1

This is easy to see; just sketch the unit ball

{x ∈ R
2 | ‖x‖ ≤ 1 }

for each of the norms, and notice that they are nested.
These norms also satisfy pairwise inequalities; for example

‖x‖1 ≤ n‖x‖∞ for all x ∈ C
n

In fact, in finite-dimensional vector spaces such inequalities hold between any pair of norms.
So if one designs a controller or an estimator to make a particular norm small, then one is
simultaneously squeezing all the other norms also (but not necessarily optimally).
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1.1 Infinite-dimensional vector spaces

Vector spaces are defined by the usual axioms of addition and scalar multiplication. The
important spaces are as follows. Note that there are real-valued versions of all of these
spaces.

Sequence space. Define the space

ℓe = {x : Z+ → C }

This is an infinite-dimensional vector space. (The subscript e stands for extended, and we’ll
see why that’s used later in the course.) We think about this vector space as the space of
sequences, or of signals in discrete-time.

The square-summable sequence space ℓ2. We need a norm to make ℓe useful. For
some vectors x ∈ ℓe we can define

‖x‖2 =

( ∞
∑

i=0

|xi|
2

)
1

2

but there are of course vectors x ∈ ℓe for which the series doesn’t converge. Define ℓ2 to be
those x for which it does converge

ℓ2 = {x ∈ ℓe | ‖x‖ is finite }

For example, the signal x(k) = ak is an element of ℓ2 if and only if |a| < 1. The perhaps
surprising fact is that ℓ2 is a subspace of ℓe. Recall that a set S is a subspace if and only if

(i) x + y ∈ S for all x, y ∈ S

(ii) λx ∈ S for all x ∈ S and λ ∈ C

that is, a subspace is a set which is closed under addition and scalar multiplication. Closure
under scalar multiplication is easy; let’s prove closure under addition.

Theorem 1. Suppose x, y ∈ ℓ2. Then x + y ∈ ℓ2 and

‖x + y‖ ≤ ‖x‖ + ‖y‖

Proof. We have

( n
∑

i=0

|xi + yi|
2

)
1

2

≤

( n
∑

i=0

|xi|
2

)
1

2

+

( n
∑

i=0

|yi|
2

)
1

2

≤ ‖x‖ + ‖y‖

where the first inequality follows from the triangle inequality for vectors in C
n+1. We there-

fore have that the partial sum

sn =
n

∑

i=0

|xi + yi|
2

2
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is bounded as a function of n, and since it is non-decreasing and bounded it must converge.
Therefore the series

∞
∑

i=0

|xi + yi|
2

converges, and x + y ∈ ℓ2. The triangle inequality also follows.

Variants of ℓ2. We’ll have need for many variants of ℓ2, such as

• bi-infinite sequences

ℓ2(Z) =

{

x : Z → C

∣

∣

∣

∣

∞
∑

i=−∞

|xi|
2 is finite

}

• vector-valued sequences

ℓ2(Z+, Cn) =

{

x : Z+ → C
n

∣

∣

∣

∣

∞
∑

i=0

‖xi‖
2

2 is finite

}

• general sequences. Let D ⊂ Z
m and

ℓ2(D, Cn) =

{

x : D → C
n

∣

∣

∣

∣

∑

i∈D

‖xi‖
2

2 is finite

}

ℓp spaces. The general ℓp spaces are defined similarly, with the p-norm replacing the 2-
norm. In particular, for x : Z+ → C the ∞-norm is defined as

‖x‖∞ = sup
t∈Z+

|x(t)|

The ℓp spaces are nested; that is
ℓ1 ⊂ ℓ2 ⊂ ℓ∞

The L2 function spaces. Define the vector space

L2([0, 1]) = {x : [0, 1] → C | x is Lebesgue measurable and ‖x‖2 is finite }

where the norm is

‖x‖2 =

(
∫

1

0

|x(t)|2 dt

)
1

2

The technical requirement of Lebesgue measurability will not be a concern for us. The most
common L2 space fwor us will be

L2([0,∞)) = {x : [0,∞) → C | x is Lebesgue measurable and ‖x‖2 is finite }
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For example, x(t) = eat is an element of L2([0,∞)) if and only if Re(a) < 0. More generally,
suppose D ⊂ C

m and define

L2(D, Cm) = { f : D → C
m | ‖f‖2 is finite }

where the norm is

‖f‖2 =

(
∫

t∈D

‖f(t)‖2

2 dt

)
1

2

The most common cases are D = [0, 1], D = [0,∞) and D = (−∞,∞). Again, one can
prove that L2 is a vector space; that is, it is closed under addition and scalar multiplication.

The Lp function spaces. These are defined similarly, with

‖x‖p =

(
∫

1

0

|x(t)|p dt

)
1

p

for p ≥ 1 and
‖x‖∞ = ess sup

t∈D

|f(t)|

Here ess sup means essential supremum; it is the sup of f over all but a set of measure zero.
Again, the measure theory won’t matter to us. As before, for functions of time we think
about the 2-norm as the RMS value of the signal and the ∞-norm as its peak. We have the
nesting

L∞([0, 1]) ⊂ L2([0, 1]) ⊂ L1([0, 1])

Note that this nesting doesn’t hold for Lp(R). There is no constant K such that for all
x ∈ L2([0,∞)) ∩ L∞([0,∞))

‖x‖2 ≤ K‖x‖∞

nor is there any constant K such that

‖x‖∞ ≤ K‖x‖2

Unlike finite-dimensional spaces, such inequalities do not hold between any pair of norms.
So minimizing the 2-norm is very different from minimizing the ∞-norm.

Functions on the complex plane. An important space in control theory is RL2, the
space of rational functions with no poles on the complex unit circle. This is a vector
space, and we use the norm

‖f‖2 =

(

1

2π

∫

2π

0

∣

∣f(ejθ)
∣

∣

2
dθ

)
1

2

Similarly, the space RH2 is the space of rational functions with no poles in D̄, where

D̄ = { z ∈ C | |z| ≤ 1 }

Again, this is a vector space, with the same norm as RL2.
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1.2 Properties of the norm

Suppose V is a normed space; that is a vector space equipped with a norm.

Lemma 2. For any x, y ∈ V we have

‖x‖ − ‖y‖ ≤ ‖x − y‖

Proof. This is a consequence of the triangle inequality. We have

‖x‖ − ‖y‖ = ‖x − y + y‖ − ‖y‖ ≤ ‖x − y‖ + ‖y‖ − ‖y‖ = ‖x − y‖

Lemma 3. The norm is continuous.

Proof. At any point a ∈ V , we have
∣

∣‖a + x‖ − ‖a‖
∣

∣ ≤ ‖x‖

from Lemma 2. Hence we can make the norm of a + x as close as we need to ‖a‖ by making
‖x‖ small. Hence the norm is continuous at a, and this is true for all a ∈ V .

Another important property is that every norm is a convex function, and has convex
sublevel sets.

1.3 Linear maps

Suppose U and V are normed spaces; Consider the set of all possible linear maps

Flinear(U, V ) = { f : U → V | f is linear }

This is a vector space. We define the induced norm of a linear map A : U → V by

‖A‖ = sup
x 6=0

‖Ax‖

‖x‖

Note that the norm of Ax is the norm in the space V , and the norm of x is the norm in the
space U , and these norms may be different. We then define

L(U, V ) = {A ∈ Flinear(U, V ) | ‖A‖ is finite }

If ‖A‖ is finite, then A is called a bounded linear map, otherwise A is called unbounded .
The space L(U, V ) is called the space of bounded linear maps from U to V . It is easy to see
that the norm is also given by

‖A‖ = sup
‖x‖≤1

‖Ax‖

If U and V are finite dimensional, then every linear map A : U → V is bounded, because
in finite dimensional spaces the unit ball is compact. Also the map x 7→ Ax is continuous,
since we can write it in a basis as matrix multiplication, and the norm is continuous, so the
composition x 7→ Ax is also continuous. Hence the induced norm of A is the maximum of a
continuous function over a compact set, and so the maximum is attained.

5



1 Norms and Vector Spaces 2008.10.07.01

The induced 2-norm. Suppose A ∈ R
m×n is a matrix, which defines a linear map from

R
n to R

m in the usual way. Then the induced 2-norm of A is

‖A‖ = σ1(A)

where σ1 is the largest singular value of the matrix A. This is also called the spectral norm

of A, and occasionally written as
‖A‖i2

where i2 stands for induced 2-norm.

The induced ∞-norm. Suppose A ∈ R
m×n. The induced ∞-norm of A is

‖A‖i∞ = max
i

∑

j

|Aij|
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