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9 State-Space Realization

Given a transfer function G ∈ R[z]m×p, such as

G(z) =









z − 1

z − 2

z − 2

z − 3

z

z2 + 1

z − 3

(z − 4)(z − 2)









we would like to find matrices A,B,C,D such that

G(z) = C(zI − A)−1B + D

Such matrices are called a realization for G. If the matrix A is n × n then the realization
is said to have degree or order n. We would like to address a number of questions, such
as when does a realization exist, and what is the smallest degree possible for a realization.

9.1 Invariant Subspaces

Suppose A ∈ R
n×n and V ⊂ R

n is a subspace. The subspace V is called invariant under
A if AV ⊂ V . This means

Ax ∈ V for all x ∈ V

We also say V is A-invariant. Some examples are as follows.

• {0} and R
n are invariant under every A.

• If A =

[

A11 A12

0 A22

]

and V =

{[

x

0

] ∣

∣

∣

∣

v ∈ R
r

}

then V is A-invariant.

We’ll have many needs for invariant subspaces. For realization theory, we need the
following.

Lemma 1. The controllable subspace

V = range
[

B AB . . . An−1B
]

is A-invariant.

Proof. If x ∈ V then there exist u0, . . . , un−1 such that

x = Bu0 + ABu1 + · · · + An−1Bun−1

and hence
Ax = ABu0 + ABu1 + · · · + AnBun−1

Now by the Cayley-Hamilton theorem, An is a linear combination of I, A, . . . , An−1 and so
Ax is also an element of V .

This is intuitively reasonable, since the controllable subspace contains all states which
may be reached starting from state zero. If by applying A we could leave this set, then we
could reach additional points in the state space.

Returning to the general theory of invariant subspaces, we have the following result.
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Lemma 2. Suppose A ∈ R
n×n, and M ∈ R

n×k. Then range M is A-invariant if and only if
there exists X ∈ R

k×k such that
AM = MX

Proof. To see if, suppose x ∈ range M . Then there exists z such that x = Mz, and so
Ax = AMz. We know that there exists X such that AM = MX, and so Ax = MXz hence
Ax ∈ range M .

For the only if direction, we construct X as follows. Suppose

M =
[

q1 . . . qk

]

Then q1 ∈ range M and since range M is A-invariant we have Aq1 ∈ range M . Therefore
there exists w1 such that Aq1 = Mw1. Repeating this for each of the qi gives

AM = M
[

w1 . . . wk

]

and so we let X =
[

w1 . . . wk

]

.

This result allows us to show that an invariant subspace gives coordinates T with respect
to which the linear map A is upper triangular, as follows.

Lemma 3. Suppose A ∈ R
n×n and V is a k-dimensional invariant subspace. Let T =

[

T1 T2

]

be invertible with range T1 = V . Then there exists X ∈ R
k×k and Y, Z such that

T−1AT =

[

X Y

0 Z

]

Proof. Suppose V is A-invariant, and let T ∈ R
n×n be partitioned as

T =
[

T1 T2

]

where the columns of T1 are a basis for V , and the columns of T2 complete the basis to span
R

n, so that T is invertible. Then range T1 is A-invariant, hence by the previous lemma there
exists X such that

AT1 = T1X

Therefore

AT = T

[

X Y

0 Z

]

We saw the earlier example that block triangular matrices have a natural invariant sub-
space, and this result now shows that all invariant subspaces have this form, in the appro-
priate coordinates. Similarly, by swapping T1 and T2, we can use lower triangular matrices
instead. This also means that if A is lower triangular, not just block triangular, then for
every r we have

range

[

0
Ir

]

is A-invariant
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This is causality. Notice also that if

T−1AT =

[

X Y

0 Z

]

then
det(λI − A) = det(λI − X) det(λI − Z)

and so the eigenvalues of X are a subset of those of A.

9.2 Minimal Realizations

Lemma 4. Suppose T1 ∈ R
n×k and

range T1 = range
[

B AB . . . An−1B
]

null T1 = {0}

and complete the basis with a matrix T2 so that T =
[

T1 T2

]

is invertible. Then

T−1AT =

[

Â11 Â12

0 Â22

]

T−1B =

[

B̂1

0

]

Proof. The triangular form of T−1AT follows from Lemma 1. Suppose B has columns

B =
[

b1 . . . br

]

Since range B ⊂ range T1 there exists xi such that

bi = T1xi

and hence

bi = T

[

xi

0

]

Let B̂1 =
[

x1 . . . xr

]

, then B = T

[

B̂1

0

]

as desired.

Suppose
Ĝ(z) = C(zI − A)−1B + D

We define the notation
[

A B

C D

]

= Ĝ

This block-matrix notation means the rational function, and we can also write
[

A B

C D

]

(z) = C(zI − A)−1B + D

Given a state-space realization, we may change coordinates as follows. It is easy to see that
if T is invertible, then

[

A B

C D

]

=

[

T−1AT T−1B

CT D

]
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The interpretation of this result is that if y and u are related by state-space dynamics

xt+1 = Axt + But

yt = Cxt + Dut

and we change coordinates according to xt = Tzt, then

zt+1 = T−1ATzt + T−1But

yt = CTzt + Dut

so with initial conditions x0 = 0 and z0 = 0 both systems map inputs to outputs in the same
way. As well as the same transfer function, these systems have the same impulse response

Ht =

{

D if t = 0

CAt−1B if t ≥ 0

We call two realizations A1, B1, C1, D1 and A2, B2, C2, D2 equivalent if they have the same
transfer function

[

A1 B1

C1 D1

]

=

[

A2 B2

C2 D2

]

This leads to following result.

Lemma 5. If A,B is not controllable, then there exists a realization with smaller state
dimension.

Proof. If A,B is not controllable, then in the coordinates defined by Lemma 4 we have

A =

[

A11 A12

0 A22

]

B =

[

B1

0

]

C =
[

C1 C2

]

and hence
[

A B

C D

]

=

[

A11 B1

C1 D

]

The following results holds for observability, in exactly the same way. If A,C is not
controllable, let V be the unobservable space

V = null











C

CA
...

CAn−1











then V is A-invariant, and so there exist coordinates in which

A =

[

A11 0
A21 A22

]

B =

[

B1

B2

]

C =
[

C1 0
]
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in which case
[

A B

C D

]

=

[

A11 B1

C1 D

]

So far, we know that

A,B,C is minimal =⇒
(A,B) is controllable, and

(A,C) is observable

In fact, the converse is true, as we shall now show. First, we need a preliminary result.

Lemma 6. Suppose A ∈ R
m×n and B ∈ R

n×p. Then

rank AB = rank B − dim(null A ∩ range B)

Proof. Let X =
[

x1 . . . xs

]

be a basis for A ∩ range B. Complete this basis with
Z =

[

z1 . . . zt

]

so that
[

X Z
]

is a basis for rangeB.
Then we have range AB = range A

[

X Z
]

= range AZ. Also null AZ = {0}, since if not
then we would have q ∈ null AZ, then Zq ∈ null A, and this is not true by our construction
of Z. Hence dim range AB = t, as desired.

Corollary 7. Suppose A ∈ R
m×n and B ∈ R

n×p. Then

(i) rank AB ≤ rank B

(ii) rank AB ≤ rank A

(iii) rank AB ≥ rank A + rank B − n

Proof. Part (i) is immediate, and part (ii) follows by taking the transpose. For part (iii)
we have

dim(null A ∩ range B) ≤ dim null A

= n − dim range A

= n − rank A

since dim range A + dim null A = n.

This gives us the main result.

Theorem 8. Suppose A ∈ R
n×n, C ∈ R

m×n, and B ∈ R
n×p. Suppose k ≥ n − 1 and where

Γ =











C

CA
...

CAk











[

B AB . . . AkB
]

Then
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(i) If A,B,C is controllable and observable then

n ≤ rank Γ

(ii) For any A,B,C we have
rank Γ ≤ n

Proof. Define for convenience

P =











C

CA
...

CAk











Q =
[

B AB . . . AkB
]

For part (i), controllability implies rankQ = n and observability implies rankP = n, and so
from Corollary 7 we have

rank PQ ≥ rank P + rankQ − n

≥ n

which is the desired result. For part (ii) we have rankPQ ≤ rank P , and P has n columns,
so rank P ≤ n.

The matrix Γ is called the Hankel operator corresponding to the system
[

A B

C D

]

A matrix is called Hankel if it is constant along anti-diagonals. This result has several
important consequences. First, we have the following.

Corollary 9. A,B,C,D is minimal if and only if A,B is controllable and A,C is observable.

Proof. We only need to show the if direction. Suppose A,B is controllable and A,C is
observable. Then Theorem 8 implies that rank Γ = n. Also part (ii) of the theorem implies
that every realization for this system has a number of states greater than rank Γ.

The entries of the Hankel operator are just the impulse response coefficients of a system.
Theorem 8 then implies that the rank of the Hankel operator is the number of states of a
minimum realization. Notice also that the entries of the Hankel operator are independent of
the particular realization.

The Hankel operator may be interpreted as follows. The current state is related to past
inputs via the controllability matrix

x(0) =
[

B AB A2B · · ·
]











u(−1)
u(−2)
u(−3)

...











= Cupast
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Suppose that at t = 0 we turn off the input, then future measurements are related to the
initial state via the observability matrix according to

yfuture =











y(0)
y(1)
y(2)

...











=











C

CA

CA2

...











x(0) = Ox(0)

Therefore, the Hankel operator relates the past inputs to the future outputs by

yfuture = OCupast = Γupast

If ρ(A) < 1 then the Hankel operator is bounded operator from ℓ2(Z−) to ℓ2(Z+). If we
partition the corresponding bi-infinite Toeplitz matrix Lg according to

Lg =

[

Sflip
g 0

Γflip Sg

]

where Sg is the semi-infinite Toeplitz operator, and the superscript flip indicates that we
reverse the order of inputs and/or outputs.

Then the rank of Γ tells us the smallest inside dimension of a factorization of Γ, which we
can interpret as the amount of memory required about the past inputs necessary to generate
the future outputs.

There is an extensive theory of Hankel operators. Note that the Hankel operator may
be obtained directly from data; then we can use the Hankel matrix to compute a realization
for the system, called subspace identification. One may also approximate Γ to generate
approximate realizations for a system, via the theory of model reduction. There is also an
analogue for nonlinear and finite state systems, called Nerode realization theory.

9.3 Realization Algorithms

Given a rational transfer matrix G we would like to find A,B,C,D such that

G =

[

A B

C D

]

For a scalar transfer function, there is a simple formula, as follows.

g(z) =
cn−1z

n−1 + · · · + c1z + c0

zn + an−1zn−1 + · · · + a1z + a0

Then g(z) = C(zI − A)−1B if

A =











0 1
0 1

. . .

−a0 −a1 · · · −an−1











B =











0
...
0
1











C =
[

c0 c1 · · · cn−1

]
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If the numerator and denominator polynomials have no common roots then this realization
is minimal. Also, if the numerator polynomial has the same degree as the denominator, one
can use the division algorithm to compute the quotient and remainder, and set D to the
remainder.

For matrix transfer functions, we construct realizations an entry at a time as follows.
Suppose

G1 =

[

A1 B1

C1 D1

]

G2 =

[

A2 B2

C2 D2

]

Then

[

G1 G2

]

=





A1 0 B1 0
0 A2 0 B2

C1 C2 D1 D2





[

G1

G2

]

=









A1 0 B1

0 A2 B2

C1 0 D1

0 C2 D2









A procedure for realization of a rational transfer matrix Ĝ is

1. Realize each element Ĝij, which is a scalar transfer function.

2. Realize the columns.

3. Realize the row of columns.

The resulting realization may be non-minimal. For example,

Ĝ(z) =

[

1

z + 1

2

z + 1

]

The previous construction leads to

Ĝ(z) =





−1 0
0 −1

1 0
0 1

1 2 0 0





but a lower-order realization is

Ĝ(z) =

[

−1 1 2

1 0 0

]

9.4 Calculus of Rationals

We can compute realizations for products, sums and inverses as follows. Two realizations
for the product are

G1G2 =





A1 B1C2 B1D2

0 A2 B2

C1 D1C2 D1D2





=





A2 0 B2

B1C2 A1 B1D2

D1C2 C1 D1D2




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To prove this, use the fact that

[

A B

0 C

]−1

=

[

A−1 −A−1BC−1

0 C−1

]

For the sum we have

G1 + G2 =





A1 0 B1

0 A2 B2

C1 C2 D1 + D2





We can also invert a realization. If D is invertible, then

G−1 =

[

A − BD−1C −BD−1

D−1C D−1

]

Note that this is a statement about rational functions; specifically it means that

[

A − BD−1C −BD−1

D−1C D−1

] [

A B

C D

]

= I

where we multiply the two rational functions and cancel all common factors. Similarly, if D

is left invertible, then
[

A − BD†C −BD†

D†C D†

][

A B

C D

]

= I
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