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This section is from Stephen Boyd’s notes for the course Multivariable Control. Alternative
references are Callier and Desoer, or Kailath.

8 Smith-McMillan Form

8.1 Standard Notation

The set R[z] is the set of polynomials with coefficients in R, and the set R(z) is the set
of rational functions. The ‘2’ in this notation is a convention from algebra. We also use
R[z]™*™ to denote the set of m x n matrices whose entries are polynomials.

8.2 Normal Rank of a Rational Matrix
If A € R[z]™*" then the rank depends on z. For example

0 ifz=1
z—1 0 1 if »— _9
rank | M iy | = . L
0 TGz meaningless if z = —1
2 otherwise

We define the mormal rank of A to be the maximum rank of A(z) over all z € C. For
example, if A € R™™", then
normal rank(zl — A) =n

For all but finitely many z € C
rank A(z) = normal rank A(2)

since the determinant of any minor of A, which is a rational function, must either vanish
identically or vanish for only finitely many z € C.
A square polynomial matrix U € R[z]"*" is called unimodular if

detU(z) #0 for all z € C

Theorem 1. Suppose U € R[z]"*". Then U is unimodular if and only if there exists a
nonzero constant ¢ € R such that
detU =c¢

Proof. The if direction is clear. The only if holds because det U is a polynomial, which
by assumption is nonzero for all z € C, and hence must be constant. [

Notice the notation is meant to indicate that det U is a polynomial. When we write
det U(z), it means that determinant is evaluated first, before evaluating U at a particular z.
This means that, for example,

1

=0

z —= 1
det [0 z]

and is not undefined when z = 0.
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Theorem 2. Suppose U € R[z]"*"™. Then U is unimodular if and only if
U™t e R[z™"

Proof. First, we show only if. Suppose U is unimodular. Then det U is a nonzero constant,
and so by Cramer’s rule

_ 1 .
U lzdetUadJU

and adj U is a polynomial matrix. Conversely, suppose U~ € R[z]"*". Then

1
detU = ——
YT et U
Since both det U and det U~! are polynomials, they are constant. [

The two most important unimodular matrices are

o -
1
U1 = C
1
i 1
which simply scales a row by ¢, and
o :
1 q(2)
Ul(Z) = 1
1
L 1]

where exactly one entry is a polynomial, and the diagonal entries are all 1. This matrix adds
g times the j’th row to the i’th row. These two matrices are called elementary matrices.
Multiplication by unimodular matrices does not change the rank at all, so that

rank UAV =rank A for all z € C

Note that this is rank; it’s a much stronger property than simply preservation of normal
rank.
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8.3 Smith Form

Suppose M € R[z]P*?, and normal rank M = r. There exist square unimodular matrices L

and R such that
A

LMR =

where \; € R[z| are monic, and \; divides into \;;;. Here L is p X p and R is ¢ X g, so that
zero block in the bottom right corner of the matrix LM R is (p —r) X (¢ — 7).

The \; are called the tnvariant polynomsials of M. They are uniquely defined by M,
in particular

where Ag =1 and
A; = monic GCD of all 7 X ¢ minors

8.4 Smith-MacMillan Form

Suppose now H € R(z)P*? is a proper rational matrix. Let
d = monic LCM of denominators of all entries of H

and define the polynomial matrix N by

N
H=—
d
Since N is a polynomial matrix, let it’s Smith form be
N = U, 5U,
where U; are square and unimodular, and
A1 |
|
|
S = A, |
,,,,,,,, S
0
Then g
H= UlEUg

and we can cancel common factors from the numerators and denominators of the entries in
S/d to give

ey

U

Ul

,,,,,,, U, !
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Here
€ Ai
v d
The polynomials ¢; and ¢; are coprime, so we have
g; divides into €;,1 and Vi1 divides into
The decomposition
. -
J— |
Uy |
. ‘
H= U1 ' € I U2
|
,,,,,,, Ur |
0

is called the Smith-MacMillan form of H.
For example, if

z—1 z—1

z+1 (241)2

H(z) = (z+2)
0

22 -1

then
(z—=1)%*(z+1) (2 —1)?
0 (z+1)(2+2)

Now A; =1 and Ay =det N = (2 — 1)%(2 4+ 1)*(z + 2), and so the Smith form of N is

d(z)=(z— )(z+1)  N(z)= [

1 0
[O (z —1)2(z + 1)2(z—|—2)]
and hence the Smith-MacMillan form of H is

1
(z - Dz + 1)
. (- 1)(z+2)
1

8.5 Poles and Zeros
The poles of H are defined to be the zeros of the polynomial

[T
=1

and this gives their multiplicities also. If we don’t care about multiplicities, then the poles
are the zeros of 9.
The zeros of H are defined to be the zeros of the polynomial

T
1=
i=1

4
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and again if we don’t care about multiplicities, then the poles are the zeros of ¢,.

For the example above, H has zeros (1, —2) and poles (1,—1,—1). In particular, it has
both a zero and a pole at 1.

The poles of H are just the poles of the entries of H since

Y1 =d

and d is the LCM of the entries of H. But the zeros are not so easy to characterize in terms
of the entries of H. For the example above

z42

H p—
det (z+1)2

and so we can have det H(\) # 0 even when A is a zero of H. Also N drops rank at z = —1,
which is not a zero of H.

8.6 Directions associated with poles and zeros

Suppose H has Smith-MacMillan form

and A\ is zero of H, say

Ek(>\) =0 but Ek:—i-l()\) =0
Then ¥y41(\) # 0, but it is possible that () = 0. Partition U;(A) and Us(A) as follows.

Ui = [0 TowV)]  Ta= [gﬂa))}

Note that these are evaluated at A\, and so are simply complex matrices. Then we define

range Ui, (A\) = input zero space

range Uyt (A) = output zero space

These vector spaces do not depend on the particular unimodular matrices used to reduce H
to Smith-MacMillan form.



