This section is from Stephen Boyd's notes for the course *Multivariable Control*. Alternative references are Callier and Desoer, or Kailath.

8 Smith-McMillan Form

8.1 Standard Notation

The set $\mathbb{R}[z]$ is the set of **polynomials** with coefficients in \mathbb{R} , and the set $\mathbb{R}(z)$ is the set of **rational functions**. The 'z' in this notation is a convention from algebra. We also use $\mathbb{R}[z]^{m \times n}$ to denote the set of $m \times n$ matrices whose entries are polynomials.

8.2 Normal Rank of a Rational Matrix

If $A \in \mathbb{R}[z]^{m \times n}$ then the rank depends on z. For example

$$\operatorname{rank} \begin{bmatrix} \frac{z-1}{z+1} & 0\\ 0 & \frac{(z-1)(z+2)}{(z+1)^2} \end{bmatrix} = \begin{cases} 0 & \text{if } z = 1\\ 1 & \text{if } z = -2\\ \text{meaningless} & \text{if } z = -1\\ 2 & \text{otherwise} \end{cases}$$

We define the **normal rank** of A to be the maximum rank of A(z) over all $z \in \mathbb{C}$. For example, if $A \in \mathbb{R}^{n \times n}$, then

normal rank
$$(zI - A) = n$$

For all but finitely many $z \in \mathbb{C}$

$$\operatorname{rank} A(z) = \operatorname{normal} \operatorname{rank} A(z)$$

since the determinant of any minor of A, which is a rational function, must either vanish identically or vanish for only finitely many $z \in \mathbb{C}$.

A square polynomial matrix $U \in \mathbb{R}[z]^{n \times n}$ is called *unimodular* if

$$\det U(z) \neq 0 \text{ for all } z \in \mathbb{C}$$

Theorem 1. Suppose $U \in \mathbb{R}[z]^{n \times n}$. Then U is unimodular if and only if there exists a nonzero constant $c \in \mathbb{R}$ such that

 $\det U = c$

Proof. The *if* direction is clear. The *only if* holds because det U is a polynomial, which by assumption is nonzero for all $z \in \mathbb{C}$, and hence must be constant.

Notice the notation is meant to indicate that det U is a polynomial. When we write det U(z), it means that determinant is evaluated first, *before* evaluating U at a particular z. This means that, for example,

$$\det \begin{bmatrix} \frac{1}{z} & 0\\ 0 & z \end{bmatrix} = 1$$

and is not undefined when z = 0.

Theorem 2. Suppose $U \in \mathbb{R}[z]^{n \times n}$. Then U is unimodular if and only if

$$U^{-1} \in \mathbb{R}[z]^{n \times n}$$

Proof. First, we show *only if.* Suppose U is unimodular. Then det U is a nonzero constant, and so by Cramer's rule

$$U^{-1} = \frac{1}{\det U} \operatorname{adj} U$$

and $\operatorname{adj} U$ is a polynomial matrix. Conversely, suppose $U^{-1} \in \mathbb{R}[z]^{n \times n}$. Then

$$\det U = \frac{1}{\det U^{-1}}$$

Since both det U and det U^{-1} are polynomials, they are constant.

The two most important unimodular matrices are

$$U_1 = \begin{bmatrix} 1 & & & & \\ & \ddots & & & \\ & & 1 & & \\ & & c & & \\ & & & 1 & \\ & & & \ddots & \\ & & & & 1 \end{bmatrix}$$

which simply scales a row by c, and

where exactly one entry is a polynomial, and the diagonal entries are all 1. This matrix adds q times the j'th row to the i'th row. These two matrices are called *elementary* matrices.

Multiplication by unimodular matrices does not change the rank at all, so that

 $\operatorname{rank} UAV = \operatorname{rank} A \qquad \text{for all } z \in \mathbb{C}$

Note that this is *rank*; it's a much stronger property than simply preservation of *normal* rank.

8.3 Smith Form

Suppose $M \in \mathbb{R}[z]^{p \times q}$, and normal rank M = r. There exist square unimodular matrices L and R such that

$$LMR = \begin{bmatrix} \lambda_1 & & & \\ & \ddots & & \\ & & \ddots & \\ & & & \lambda_r & \\ & & & 0 \end{bmatrix}$$

where $\lambda_i \in \mathbb{R}[z]$ are monic, and λ_i divides into λ_{i+1} . Here L is $p \times p$ and R is $q \times q$, so that zero block in the bottom right corner of the matrix LMR is $(p-r) \times (q-r)$.

The λ_i are called the *invariant polynomials* of M. They are uniquely defined by M, in particular

$$\lambda_i = \frac{\Delta_i}{\Delta_{i-1}}$$

where $\Delta_0 = 1$ and

 $\Delta_i = \text{monic GCD of all } i \times i \text{ minors}$

8.4 Smith-MacMillan Form

Suppose now $H \in \mathbb{R}(z)^{p \times q}$ is a proper rational matrix. Let

d =monic LCM of denominators of all entries of H

and define the polynomial matrix N by

$$H = \frac{N}{d}$$

Since N is a polynomial matrix, let it's Smith form be

$$N = U_1 S U_2$$

where U_i are square and unimodular, and

Then

$$H = U_1 \frac{S}{d} U_2$$

and we can cancel common factors from the numerators and denominators of the entries in S/d to give

$$\frac{S}{d} = \begin{bmatrix} \frac{\varepsilon_1}{\psi_1} & & \\ & \ddots & \\ & & \frac{\varepsilon_r}{\psi_r} \\ & & 0 \end{bmatrix}$$

8 Smith-McMillan Form

Here

$$\frac{\varepsilon_i}{\psi_i} = \frac{\lambda_i}{d}$$

The polynomials ε_i and ψ_i are coprime, so we have

$$\varepsilon_i$$
 divides into ε_{i+1} and ψ_{i+1} divides into ψ_i

The decomposition

$$H = U_1 \begin{bmatrix} \frac{\varepsilon_1}{\psi_1} & & \\ & \ddots & \\ & & \frac{\varepsilon_r}{\psi_r} & \\ & & 0 \end{bmatrix} U_2$$

is called the *Smith-MacMillan* form of *H*.

For example, if

$$H(z) = \begin{bmatrix} \frac{z-1}{z+1} & \frac{z-1}{(z+1)^2} \\ 0 & \frac{z+2}{z^2-1} \end{bmatrix}$$

then

$$d(z) = (z-1)(z+1)^2 \qquad N(z) = \begin{bmatrix} (z-1)^2(z+1) & (z-1)^2 \\ 0 & (z+1)(z+2) \end{bmatrix}$$

Now $\Delta_1 = 1$ and $\Delta_2 = \det N = (z-1)^2(z+1)^2(z+2)$, and so the Smith form of N is

$$\begin{bmatrix} 1 & 0 \\ 0 & (z-1)^2(z+1)^2(z+2) \end{bmatrix}$$

and hence the Smith-MacMillan form of ${\cal H}$ is

$$\begin{bmatrix} \frac{1}{(z-1)(z+1)^2} & 0\\ 0 & \frac{(z-1)(z+2)}{1} \end{bmatrix}$$

8.5 Poles and Zeros

The **poles** of H are defined to be the zeros of the polynomial

$$\prod_{i=1}^r \psi_i$$

and this gives their multiplicities also. If we don't care about multiplicities, then the poles are the zeros of ψ_1 .

The *zeros* of H are defined to be the zeros of the polynomial

$$\prod_{i=1}^r \varepsilon_i$$

and again if we don't care about multiplicities, then the poles are the zeros of ε_r .

For the example above, H has zeros (1, -2) and poles (1, -1, -1). In particular, it has both a zero and a pole at 1.

The poles of H are just the poles of the entries of H since

$$\psi_1 = d$$

and d is the LCM of the entries of H. But the zeros are not so easy to characterize in terms of the entries of H. For the example above

$$\det H = \frac{z+2}{(z+1)^2}$$

and so we can have det $H(\lambda) \neq 0$ even when λ is a zero of H. Also N drops rank at z = -1, which is not a zero of H.

8.6 Directions associated with poles and zeros

Suppose H has Smith-MacMillan form

$$H = U_1 \begin{bmatrix} \frac{\varepsilon_1}{\psi_1} & & & & \\ & \ddots & & & \\ & \ddots & & & \\ & & \frac{\varepsilon_r}{\psi_r} & & \\ & & & 0 \end{bmatrix} U_2$$

and λ is zero of H, say

$$\varepsilon_k(\lambda) = 0$$
 but $\varepsilon_{k+1}(\lambda) = 0$

Then $\psi_{k+1}(\lambda) \neq 0$, but it is possible that $\psi_k(\lambda) = 0$. Partition $U_1(\lambda)$ and $U_2(\lambda)$ as follows.

$$U_1(\lambda) = \begin{bmatrix} \hat{U}_1(\lambda) & U_{\text{out}}(\lambda) \end{bmatrix} \qquad U_2 = \begin{bmatrix} \hat{U}_2(\lambda) \\ U_{\text{in}}^*(\lambda) \end{bmatrix}$$

Note that these are evaluated at λ , and so are simply complex matrices. Then we define

range
$$U_{\rm in}(\lambda)$$
 = input zero space
range $U_{\rm out}(\lambda)$ = output zero space

These vector spaces do not depend on the particular unimodular matrices used to reduce H to Smith-MacMillan form.