
2008.10.07.08

5 Toeplitz Operators

There are two signal spaces which will be important for us.

• Semi-infinite signals: Functions x ∈ ℓ2(Z+, R). They have a Fourier transform
g = Fx, where g ∈ H2; that is, g : D → C is analytic on the open unit disk, so it has
no poles there.

• Bi-infinite signals: Functions x ∈ ℓ2(Z, R). They have a Fourier transform g = Fx,
where g ∈ L2(T). Then g : T → C, and g may have poles both inside and outside the
disk.

5.1 Causality and Time-invariance

Suppose G is a bounded linear map G : ℓ2(Z) → ℓ2(Z) given by

yi =
∑

j∈Z

Gijuj

where Gij are the coefficients in its matrix representation. The map G is called time-

invariant or shift-invariant if it is Toeplitz , which means

Gi−1,j = Gi,j+1

that is G is constant along diagonals from top-left to bottom right. Such matrices are
convolution operators, because they have the form

G =



















. . .

a0 a−1 a−2

a1 a0 a−1 a−2

a2 a1 a0 a−1

a2 a1 a0

. . .



















Here the box indicates the 0, 0 element, since the matrix is indexed from −∞ to ∞. With
this matrix, we have y = Gu if and only if

yi =
∑

k∈Z

ai−juj

We say G is causal if the matrix G is lower triangular. For example, the matrix

G =



















. . .

a0

a1 a0

a2 a1 a0

a3 a2 a1 a0

. . .


















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is both causal and time-invariant. These definitions extend in the natural way to operators
on ℓ2(Z+); for example

H =















b0

b1 b0

b2 b1 b0

b3 b2 b1 b0

. . .















is both causal and time-invariant on ℓ2(Z+). The causal and time-invariant operators are
precisely those of interest to us; a linear time-invariant state-space system gives rise to such
an operator.

We’ll occasionally have need to characterize such operators without reference to the
matrix representation. To do so, for each t ∈ Z define the projection Pt : ℓ2(Z) → ℓ2(Z) by

y = Ptu if ys =

{

us if s ≤ t

0 otherwise

Then one defines G : ℓ2(Z) → ℓ2(Z) to be causal if PtGPt = PtG for all t ∈ Z, and one can
show that this holds iff G is lower-triangular.

5.2 The Shift Operator

We define the shift operator L : ℓ2(Z) → ℓ2(Z) by

(Lx)k = xk−1

also called the delay operator or the right-shift . In matrix form L is given by

L =



















. . .

0

1 0
1 0

1 0
. . .



















Then L∗ = L−1. We can use this to give a coordinate-free definition of time-invariance as
follows. A map G : ℓ2(Z) → ℓ2(Z) is called time-invariant if

L∗GL = G

and this holds iff G is Toeplitz, since it means that

GL = LG

By definition, the matrix for G has i, j entry equal to

Gij = 〈ei, Gej〉
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the above equation means that
Gi−1,j = Gi,j+1

so G is Toeplitz. Notice that we need a slightly different argument on ℓ2(Z+), since the
right-shift on ℓ2(Z+) is not invertible.

5.3 Multiplication Operators

Our primary interest is linear time-invariant maps on ℓ2. We have seen that this means that
the matrix representation is Toeplitz, that is, that these are convolution maps. These arise
by multiplication in the frequency domain.

For functions g : T → C define the infinity-norm to be

‖g‖∞ = ess sup
θ∈[0,2π]

|g(ejθ)|

Here ess sup means the essential supremum; in other words, M = ‖g‖∞ implies that

|g(ejθ)| ≤ M

at almost all θ, excluding at most a set of measure zero. Then define L∞(T) to be

L∞(T) =
{

g : T → C
∣

∣ g is Lesbesgue measurable and ‖g‖ is finite
}

Suppose g ∈ L∞(T). Define the multiplication operator Mg by

(Mgf)(λ) = g(λ)f(λ)

So we write y = Mgf to mean y = gf , the idea being that this reminds us that Mg is a
linear map.

The following result is very simple, but important enough that we’ll state it as a theorem.

Theorem 1. Suppose g ∈ L∞(T). Then Mg : L2(T) → L2(T) and

‖Mg‖ = ‖g‖∞

Proof. Suppose u ∈ L2(T), and y = Mgu. Then

‖y‖2
2 =

1

2π

∫ 2π

0

|y(ejθ)|2 dθ

=
1

2π

∫ 2π

0

|g(ejθ)|2|u(ejθ)|2 dθ

≤ ‖g‖2
∞

1

2π

∫ 2π

0

|u(ejθ)|2 dθ

= ‖g‖2
∞‖u‖2

2

and so y ∈ L2(T) and the induced 2-norm of Mg satisfies

‖Mg‖ ≤ ‖g‖∞

3
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To show equality, we need to show that for all ε > 0 there exists u ∈ L2(T) with ‖u‖ = 1
and

‖Mgu‖2 ≥ ‖g‖∞ − ε

We’ll assume that g is continuous. The result holds more generally, but requires some
measure theory to prove. The idea of the proof is as follows. Suppose ejθ0 is the point on T

at which the infinity norm is achieved

|g(ejθ0)| = max
θ∈[0,2π]

|g(ejθ)|

and we know there is such a point since g is continuous. Then let u be

u(ejθ) =

{

√

π/δ if θ ∈ [θ0 − δ, θ0 + δ]

0 otherwise

Then ‖u‖ = 1 and as we can show that by choosing δ small we can make ‖Mgu‖ as close as
we like to ‖g‖∞. The details are left as an exercise.

We now turn to the correspondence between multiplication in the frequency domain
and convolution in the time domain. From now on, we’ll use the hat notation for Fourier
transforms. That is, if g ∈ ℓ2(Z) then we’ll let ĝ = Fg.

The first thing to notice is that L∞(T) ⊂ L2(T). So if we have ĝ ∈ L∞(T), it is also an
element of L2(T) and so it has well-defined Fourier coefficients, given by g = F ∗ĝ.

Theorem 2. Suppose ĝ ∈ L∞(T), with its associated multiplication operator Mĝ and let

g = F ∗ĝ. Then F ∗MĝF is Toeplitz, and is given by

F ∗MĝF =



















. . .

g0 g−1 g−2

g1 g0 g−1 g−2

g2 g1 g0 g−1

g2 g1 g0

. . .



















Proof. As usual, let ei be the i’th standard basis vector in ℓ2(Z). Let G = F ∗MgF . Then
G : ℓ2(Z) → ℓ2(Z), and

Gpq = 〈ep, F
∗MĝFeq〉

= 〈Fep,MĝFeq〉

=
1

2π

∫ π

−π

ĝ(ejθ)ej(q−p)kθ dθ

= 〈φp−q, ĝ〉

= gp−q

and so Gpq depends has the specified form as desired.
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Suppose u ∈ ℓ2(Z), a signal defined on bi-infinite time. Then we take it’s λ-transform,
û = Fu, to give the function û ∈ L2(T). Then we apply the multiplication operator Mg,
to give ŷ = MGû, and let y ∈ ℓ2(Z) the the inverse transform of ŷ given by y = F ∗ŷ. The
resulting map from u to y is F ∗MGF , which is Toeplitz.

This result also exhibits the impulse response g corresponding to the multiplication op-
erator Mĝ, since if we apply the input

e0 = (. . . , 0, 0, 0, 1 , 0, 0, 0, . . . )

we receive output
g = (. . . , g−3, g−2, g−1, g0 , g1, g2, g3, . . . )

Further, this result tells us the induced 2-norm of Mĝ, since

‖F ∗MĝF‖ = sup
u 6=0,u∈ℓ2(Z)

‖F ∗MĝFu‖2

= sup
u 6=0,u∈ℓ2(Z)

‖MĝFu‖2

= sup
û6=0,û∈L2(T)

‖Mĝû‖2

= ‖Mĝ‖

= ‖ĝ‖∞

So the maximum absolute value of the transfer function on the unit circle, which is the
maximum of the magnitude Bode plot, is the induced 2-norm of the convolution map, over
bi-infinite signals. The proof of Theorem 2 also gives an indication of the worst case signal,
which is almost a sinusoid.

We have shown above that every ĝ ∈ L∞(T) has a corresponding Toeplitz operator on
ℓ2(Z) which is bounded. In fact, the converse is also true; given a bounded Toeplitz operator
on ℓ2(Z), there is a corresponding function g ∈ L∞(T) which generates it. We will not need
this result in this course.

5.4 Polynomial Transfer Functions

One of the most important results about Fourier series is as follows.

Theorem 3. Let ĝ : T → C be the function ĝ(λ) = λ. Then

F ∗MĝF = L

In other words, in Fourier coordinates the delay is just multiplication by λ. Hence the
choice of notation L for the shift. Now if ĝ is a polynomial, the corresponding Toeplitz map
is clear. Suppose ĝ : T → C is

ĝ(λ) = g−nλ
−n + g−n+1λ

−n+1 + · · · + g−1λ
−1 + g0 + g1λ + · · · + amλm

Then the corresponding Laurent operator is

F ∗MĝF = g−nL
−n + g−n+1L

−n+1 + · · · + g−1L
−1 + g0 + g1L + · · · + amLm
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which is

F ∗MĝF =















. . .

gm . . . g1 g0 g−1 . . . g−n

gm . . . g1 g0 g−1 . . . g−n

gm . . . g1 g0 g−1 . . . g−n

. . .















a banded matrix. In other words, polynomial transfer functions correspond to banded con-
volution maps. Such maps are called finite-impulse-response (FIR) systems.

5.5 Properties of Multiplication Operators

(i) Inverses: Suppose ĝ is continuous. Then Mĝ is invertible if and only if ĝ(ejθ) 6= 0 for
all θ, and

(Mĝ)
−1 = Mĥ

where h(ejθ) = 1/g(ejθ).

(ii) Commutativity: For any f, g,∈ L∞(T)

Mf̂Mĝ = MĝMf̂

Note that this implies that Toeplitz maps commute also.

(iii) Adjoint: Suppose ĝ ∈ L∞(T) and Mĝ : L2(T) → L2(T) is the corresponding multipli-
cation operator. Define the function g̃ ∈ L∞(T) by

g̃(ejθ) = ĝ(ejθ)

Then M∗
ĝ = Mg̃. Because then

〈y,Mgx〉 =
1

2π

∫ 2π

0

y(ejθ)ĝ(ejθ)x(ejθ) dθ

=
1

2π

∫ 2π

0

g̃(ejθ)y(ejθ)x(ejθ) dθ

= 〈M∗
ĝ y, x〉

In particular, if ĝ is the polynomial

ĝ(λ) = g0 + g1λ + · · · + gnλ
n

then
g̃(λ) = g0 + g1λ

−1 + · · · + gnλ
−n (1)

Notice that for λ ∈ T we also have

g̃(λ) = g̃(λ) = g0 + g1λ + · · · + gnλ
n

and so this is also correct on the unit circle. However it is not correct on the unit disk,
since equation (1) is the Fourier series expansion, and we construct the value of the
function on the interior of the unit disk from this.

6



5 Toeplitz Operators 2008.10.07.08

5.6 Rational Transfer Functions

For a simple rational, suppose ĝ is given by

ĝ(λ) =
1

1 − aλ

where a ∈ C and |a| < 1. Then we know that the inverse Fourier transform of ĝ is

g = (. . . , 0, 0, 0, 1 , a, a2, a3, . . . )

and so the corresponding Toeplitz operator is

F ∗MgF =



















. . .

1

a−1 1
a−2 a−1 1
a−3 a−2 a−1 1

. . .



















which is lower triangular ; i.e., g is the transfer function for a causal system.
We also know the inverse of this system. Define ĥ by

ĥ(λ) = 1 − aλ

Since ĥ ∈ L∞, the map Mĥ is bounded, and

MĝMĥ = I MĥMĝ = I

so Mĥ = M−1
ĝ . Then the corresponding Toeplitz operators are also inverses of each other,

since

F ∗MĝF = F ∗(Mĥ)
−1F

= (F ∗MĥF )−1

and this means that















. . .

1

−a 1
−a 1

. . .















−1

=



















. . .

1

a−1 1
a−2 a−1 1
a−3 a−2 a−1 1

. . .



















(2)

But this only holds if |a| < 1. Because if |a| > 1, then the inverse Fourier transform of ĝ is

g = (. . . ,−a−3,−a−2,−a−1, 0 , 0, 0, . . . )
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and so

F ∗MgF =



















. . .

0 −a−1 −a−2

0 −a−1 −a−2

0 −a−1

0
. . .



















which means















. . .

1

−a 1
−a 1

. . .















−1

=















. . .

0 −a−1 −a−2

0 −a−1 −a−2

0 −a−1

. . .















(3)

So which of equations (2) and (3) holds depends on the magnitude of a. If |a| < 1 then

1

1 − aλ

has its pole outside the disk, and the corresponding Toeplitz operator is causal. On the other
hand, if |a| > 1 then the pole is inside the disk, and the corresponding Toeplitz operator
is anti-causal. Notice the bizarre feature that the inverse of a lower-triangular operator is
upper triangular! This never happens in finite dimensions.

Algebraically, both of these equations are correct. And in control theory are used to (2)
as the convolution map corresponding to 1/(1 − aλ) no matter what the magnitude of a; if
|a| < 1 we simply say that the system is unstable. But on ℓ2, we cannot have exponentially
growing signals. In signal processing applications, if causality does not matter then we want
to use the position of the poles to determine the causality of the map, not the stability.
This is precisely the mathematics that is forced upon us by viewing transfer functions as
multiplication operators on ℓ2(Z).

There are other theories of transfer functions which allow us to interpret 1/(1 − aλ) as
causal no matter what the magnitude of a. These are useful for studying unstable sys-
tems, but make it substantially harded to analyze the 2-norm and make use of least-squares
techniques.

We can now find the corresponding Laurent map for any rational transfer function g; we
simply use partial fractions.

5.7 More on Causality

We’ll give another way to see the above. First, we need a useful result.

Theorem 4. Suppose A ∈ L(V, V ) is a bounded linear map on the Banach space V , and

‖A‖ < 1. Then the series

I + A + A2 + A3 + · · ·

8
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converges, the operator I − A is invertible, and

(I − A)−1 = I + A + A2 + A3

Proof. Let Sn be the partial sum

Sn =
n

∑

k=0

Ak

Then for m > n we have

‖Sm − Sn‖ =

∥

∥

∥

∥

m
∑

k=n+1

Ak

∥

∥

∥

∥

≤
m

∑

k=n+1

‖Ak‖

≤

m
∑

k=n+1

‖A‖k

= ‖A‖n+1

(

1 − ‖A‖m−n

1 − ‖A‖

)

≤
‖A‖n+1

1 − ‖A‖

which tends to zero as n → ∞. Hence S is a Cauchy sequence, and since L(V, V ) is a Banach
space this implies that the series converges.

The remainder of the lemma now follows, since composition with I − A is continuous,
and hence we can apply it term by term to show

(I − A)(I + A + A2 + A3 + · · · ) = I

and
(I + A + A2 + A3 + · · · )(I − A) = I

as required.

Now consider again our pair of functions

ĝ(λ) =
1

1 − aλ
ĥ(λ) = 1 − aλ

We know that,

F ∗MĝF = (F ∗MĥF )−1

= (I + aL)−1

and so if |a| < 1 then
F ∗MĝF = I + aL + a2L2 + a3L3 + . . .

9
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from Theorem 4. So we have

F ∗MgF = I + aL + a2L2 + . . .

=



















. . .

1

a−1 1
a−2 a−1 1
a−3 a−2 a−1 1

. . .



















Or alternatively, if |a| > 1 then

(I + aL)−1 = a−1L−1(I + a−1L−1)−1

= a−1L−1(I + a−1L−1 + a−2L−2 + . . . )

=















. . .

0 −a−1 −a−2

0 −a−1 −a−2

0 −a−1

. . .














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