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7 Spectral Factorization

7.1 The H2 norm

7.1.1 Matrix ℓ2

We consider the matrix version of ℓ2, given by

ℓ2(Z, Rm×n) =
{

H : Z → R
m×n | ‖H‖2 is finite

}

where the norm is

‖H‖2
2 =

∞
∑

k=−∞

‖H‖2
F

This space has the natural generalization to ℓ2(Z+, Rm×n). If n = 1 then it each component
is a vector, and the Frobenius norm is equal to the usual Euclidean norm in this case.

7.1.2 Linear systems driven by noise

We’ll consider the linear system with impulse response H ∈ ℓ2(Z+, Rm×n). Suppose u0, u1, . . .
are IID Gaussian random variables with uk ∼ N (0, I), and
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where each Hk ∈ R
m×n. Then we have

E(yt+sy
T
t ) = E

t+s
∑

k=0

t
∑

i=0

Ht+s−kuku
T
i HT

t−i

=
t

∑

k=0

Ht+s−kH
T
t−k

=
0

∑

j=−t

Hs−jH
T
j

which is a convolution of H with the time-flip of HT . Hence

lim
t→∞

E(yty
T
t ) =

∞
∑

i=0

HiH
T
i

and
lim
t→∞

E‖yt‖2 = ‖H‖2
2
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That is, the mean square response of the system to Gaussian white noise is the ℓ2 norm of
the impulse response. We use this to measure the size of the system SH , as follows. We
define the 2-norm of a semi-infinite Toeplitz operator to be

‖SH‖2 = ‖H‖2

Notice that this is a very unusual notation on the left; we cannot apply this 2-norm to any
operator on ℓ2(Z+), but only to Toeplitz operators. And we need H ∈ ℓ2(Z+). However,
it’s an extremely useful notation, precisely because it measures the mean-square norm of the
output when the input is discrete Gaussian white noise.

If ĝ ∈ H2, then we have
‖Sg‖2 = ‖ĝ‖H2

and so this norm is called the H2 norm of Sg. If g is scalar, then since g = Sge0 we have

‖Sg‖2 = ‖Sge0‖2 (1)

where e0 ∈ ℓ2(Z+) is e0 = (1, 0, 0, . . . ).

7.2 Example: a filtering problem

We have the linear dynamical system

xt+1 = Axt + Bwt

rt = C1xt

yt = C2xt + Dwt

Here w0, w1, . . . is Gaussian white noise. We measure yt and would like to estimate rt.
Because so far we have only analyzed scalar systems, we’ve made the simplifying assumption
that the measurement yt is corrupted by noise wt, which is the same random signal that
disturbs the dynamics.

Then we have two transfer functions

ĥ(λ) = C1(λ
−1I − A)−1B

ĝ(λ) = C2(λ
−1I − A)−1B + D

and we’ll use estimator
u = Sky

2
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defined by transfer function k̂. Then the mean square error is

lim
t→∞

E‖yt‖2 = ‖Sh − SkSg‖2

and we’d like to find a transfer function k̂ to minimize this.
The optimal k̂ to this problem is precisely given by the steady-state Kalman filter. We’ll

construct this in the frequency domain. We have

(Sh − SkSg)e0 = (Sh − SgSk)e0

= h − Sgk

and so, using (1) we have
‖Sh − SkSg‖2 = ‖h − Sgk‖2

Therefore we’d like to solve
min

k∈ℓ2(Z+)
‖h − Sgk‖2

an infinite-dimensional least-squares problem. Note that the solution of this problem is not

a single estimate, but is instead the linear dynamical system that maps measurements
to estimates.

7.3 Least Squares

We would like to solve the problem

min
x∈ℓ2(Z+)

‖y − Gx‖

where G : ℓ2(Z+) → ℓ2(Z
+) is a bounded linear map.

Suppose G is a real matrix and GT G is invertible. Then completion of squares gives

‖y − Gx‖2
2 = yT (I − G(GT G)−1GT )y + (GT Gx − GT y)T (GT G)−1(GT Gx − GT y)

and hence any x such that GT Gx = y is optimal. Exactly the same trick may be used for
linear operators on infinite dimensional spaces.

Theorem 1. Suppose X and Y are Hilbert spaces, and G : X → Y is a bounded linear

operator. Then x minimizes

‖y − Gx‖
if and only if

G∗Gx = G∗y

Proof. We will not give a complete proof here; it’s straightforward, but a careful expla-
nation of the infinite-dimensional case is a little too long. However, it’s simple to see one
direction in the case when G∗G is invertible. Then we have

‖y − Gx‖2
2 = 〈y, (I − G(G∗G)−1G∗)y〉 + 〈G(x − (G∗G)−1G∗y), G(x − (G∗G)−1G∗y)〉
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which may be verified by simply expanding the inner products. Then the second inner
product is always nonnegative, and is minimized by the choice

x = (G∗G)−1G∗y

as desired.

Notice that the theorem does not mention existence, and if range G is not closed there
may not exist an optimal solution.

7.3.1 Least squares with a Toeplitz operator

We have ĝ ∈ RH∞ and would like to solve

min
x∈ℓ2(Z+)

‖y − Sgx‖

then S∗

gSg = Sw where w = g̃g. Then since range Sw is closed and null Sw = {0}, one can
show that Sw is invertible. Hence there exists a unique solution.

7.3.2 The Wiener-Hopf Problem

We would like to solve the Wiener-Hopf equation , which is

Swx = v

for x ∈ ℓ2(Z+). We are given v ∈ ℓ2(Z+); for the case of the filtering problem above we have
v = S∗

gy. The function ŵ is positive and real on T, and is usually given by

ŵ(λ) = ĝ(λ)g̃(λ)

where ĝ ∈ RH∞ has no poles or zeros on T.

7.4 Some linear algebra results

Lemma 2. Suppose A is partitioned according to

A =

[

A11 A12

A21 A22

]

Then A22x = y if and only if there exists z such that

A

[

0
x

]

−
[

0
y

]

=

[

z
0

]

Proof. The above equation is just

A12x = z

A22x = y

and the proof is immediate.
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Lemma 3. Suppose A is partitioned according to

A =

[

A11 A12

A21 A22

]

and A is invertible. Suppose also that U and L are invertible, U,U−1 are upper triangular,

and L,L−1 are lower triangular, and

A = UL

Then let

P =

[

0 0
0 I

]

Under these conditions, if A22x = y then

x =
[

0 I
]

L−1PU−1

[

0
y

]

Proof. Suppose A22x = y. Then by Lemma 2 we have

A

[

0
x

]

−
[

0
y

]

=

[

z
0

]

Now, since A = UL we have

L

[

0
x

]

− U−1

[

0
y

]

= U−1

[

z
0

]

and multiplying on the left by P gives

PL

[

0
x

]

− PU−1

[

0
y

]

= PU−1

[

z
0

]

But since U−1 is upper, we have

PU−1

[

z
0

]

= 0

and since L is lower

PL

[

0
x

]

= L

[

0
x

]

Hence

L

[

0
x

]

= PU−1

[

0
y

]

and so
[

0
x

]

= L−1PU−1

[

0
y

]

as desired.
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7.5 Spectral Factorization

7.5.1 Trigonometric Polynomials

A rational function of the form

f(λ) =
n

∑

k=−n

ckλ
k

is called a trigonometric polynomial . There is no requirement that cn or c−n be zero,
so for convenience we number the terms with positive and negative powers up to n. We
can think of these as functions with finite Fourier series expansions, or as corresponding to
banded Toeplitz operators. It is straightforward to see that, since the λk are a Fourier basis,
f(λ) is real for all λ ∈ T if and only if

ck = c−k for all k

This then implies that
f(1/λ) = f(λ) for all λ ∈ C (2)

and so if a is a root of f then so is 1/a.

7.5.2 Spectral Factorization of Trigonometric Polynomials

Theorem 4. Suppose f is the trigonometric polynomial

f(λ) =
n

∑

k=−n

ckλ
k

and f(λ) is real for all λ ∈ T. Then

f(λ) ≥ 0 for all λ ∈ T

if and only if there exists a polynomial

q(λ) = a(λ − z1) . . . (λ − zn)

with all |zi| > 1 such that

f(λ) = q(λ)q̃(λ)

Proof. The if direction is immediate. For the converse direction, let the polynomial p be

p(λ) = λnf(λ)

Since p is a polynomial, not a trigonometric polynomial, we can factorize it. Suppose without
loss of generality that cn 6= 0, then p has 2n roots, all of which are nonzero since c−n is also
nonzero. Then we factorize p as

p(λ) = c

m
∏

i=1

(λ − zi)(λ − 1/z̄i)
r

∏

j=1

(λ − wj)
2
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where |zi| > 1 and |wj| = 1. Since f is nonnegative on T, and f is continuous, the roots
w1, . . . , wr which are on T must have even multiplicity. And each root zi 6∈ T must have a
corresponding root 1/z̄i by the symmetry property of f in (2). Hence

f(λ) = d

m
∏

i=1

(λ − zi)(λ
−1 − z̄i)

r
∏

j=1

(λ − wj)
2 (3)

where

d = c
m
∏

i=1

(−1

z̄i

)

and d > 0 since each of the pairs of terms in (3) is positive. So we set

q(λ) =
√

d

m
∏

i=1

(λ − zi)
r

∏

j=1

(λ − wj)

and we have
f(λ) = q(λ)q̃(λ)

as desired.

This factorization is called a spectral factorization of f , or Wiener-Hopf factor-

ization , and the above theorem is called the Riesz-Fejér theorem. It gives f as the product
of a polynomial with all roots outside D̄ and a polynomial with all roots inside D. The
polynomial q is called outer because all of its zeros are outside D̄.

Let’s look at an example. Suppose

f(λ) =
1

4

(

6λ−2 + 35λ−2 + 62 + 35λ + 6λ2
)

then clearly f is real on T, and one can check that f is positive on T also. Then

p(λ) =
1

4

(

6 + 35λ + 62λ2 + 35λ3 + 6λ4
)

which factorizes as
p(λ) = 3

2
(λ + 1

2
)(λ + 3)(λ + 2)(λ + 1

3
)

and so
p(λ) = λ2

4
(λ + 1

2
)( 1

λ
+ 3)(λ + 2)( 1

λ
+ 1

3
)

so let
q = 1

2
(λ + 2)(λ + 3)

This result says that every real trigonometric polynomial which is nonnegative on the circle
is the absolute value squared of a polynomial

f(λ) = |q(λ)|2

One can also, by taking the real and imaginary parts of q, use this to show that every such
polynomial is a sum of squares of two real polynomials. This and related results have
many interesting connections to convex programming.

There are many generalizations of this result. The requirement that f be strictly pos-
itive may be relaxed. The result may be extended to operator-valued polynomials, and to
factorization of general positive functions.
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7.5.3 Spectral Factorization of Toeplitz Operators

Theorem 5. Suppose ĝ ∈ RH∞, with no poles or zeros on T. Then there exists p̂ ∈ H∞

such that

L∗

gLg = L∗

pLp

and both Lp and L−1
p are causal.

Proof. We have

ĝ(λ) =
b̂(λ)

â(λ)

where â and b̂ are polynomials, and since ĝ ∈ H∞ it has no poles in D. We have

L∗

gLg = Lw

where

ŵ(λ) = ĝ(λ)g̃(λ)

=
b̂(λ)b̃(λ)

â(λ)ã(λ)

The numerator and denominator of this expression are trigonometric polynomials, so we find
their spectral factors

b̂(λ)b̃(λ) = β(λ)β̃(λ)

â(λ)ã(λ) = α(λ)α̃(λ)

Then let

p(λ) =
β(λ)

α(λ)

Then since p has all its poles outside D̄ we have Lp is causal. The polynomial β has no zeros
on T since ĝ has no zeros on T, and so Lp is invertible. Also, since p has all its zeros outside
D̄ we know that L−1

p is causal also.

7.6 Least-Squares Using Spectral Factorization

7.6.1 The Wiener-Hopf Problem

We would like to solve the Wiener-Hopf equation , which is

Swx = v

for x ∈ ℓ2(Z+). We are given v ∈ ℓ2(Z+). The function ŵ is positive and real on T, and is
usually given by

ŵ(λ) = ĝ(λ)g̃(λ)

where ĝ ∈ RH∞ has no poles or zeros on T.
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In other words, we’d like to find a solution to the linear system defined by a Hermitian
Toeplitz operator. If x is a solution, then by Lemma 2 we know that there exists z ∈ ℓ2(Z−)
such that

Lw

[

0
x

]

−
[

0
v

]

=

[

z
0

]

Now apply Theorem 5, which gives
Lw = L∗

pLp

Then Lemma 3 implies that x must satisfy

x =
[

0 I
]

L−1
p

[

0 0
0 I

]

(L∗

p)
−1

[

0
v

]

7.6.2 The Least-Squares Problem

And we can apply the Wiener-Hopf solution to solve the original least-squares problem

min
x∈ℓ2(Z+)

‖y − Sgx‖

where ĝ ∈ H∞ and has no poles or zeros on T. If S∗

gSg is invertible, then Theorem 1 and the
Wiener-Hopf solution immediately give that the optimal x is

x =
[

0 I
]

L−1
p

[

0 0
0 I

]

(L∗

p)
−1

[

0
S∗

gy

]

7.6.3 Example

We have

g =
(2λ − 1)(5λ − 1)

10(λ − (4 + 3i))(λ − (4 − 3i))

and

h = − 25λ(3λ − 1)

(λ − (4 + 3i))(λ − (4 − 3i))

In state space

A =

(

8
25

− 1
25

1 0

)

B =

(

1
0

)

D =
1

250

and

C2 =

(

− 167
6250

249
6250

)

C1 =

(

1
−3

)

Then

M∗

ĝ =
(λ − 5)(λ − 2)

10((4 − 3i)λ − 1)((4 + 3i)λ − 1)

So

M∗

ĝ h =
5(λ − 5)(λ − 2)λ(3λ − 1)

2(iλ − (3 + 4i))(λ − (4 + 3i))((3 + 4i)λ − i)((4 + 3i)λ − 1)

9



7 Spectral Factorization 2008.10.27.01

Now projecting onto positive time is the same as projecting onto H2, which we do via partial
fractions. We have

M∗

ĝ h =
4441 − 478λ

36720 (25λ2 − 8λ + 1)
− 5(434λ − 6575)

7344 (λ2 − 8λ + 25)
− 3

10

and so

PM∗

ĝ h = − 5(434λ − 6575)

7344 (λ2 − 8λ + 25)
− 3

10

which is just

PM∗

ĝ h = − 11016λ2 − 77278λ + 111025

36720(λ − (4 + 3i))(λ − (4 − 3i))

We also need to spectral factorize. We have

g̃(λ)g(λ) =
(λ − 5)(λ − 2)(2λ − 1)(5λ − 1)

100(λ − (4 + 3i))(λ − (4 − 3i))((4 − 3i)λ − 1)((4 + 3i)λ − 1)

And so we set

p̂(λ) =
(λ − 5)(λ − 2)

10(λ − (4 + 3i))(λ − (4 − 3i))

Then

(M∗

p̂ )−1(PM∗

ĝ h) =
−275400λ4 + 2020078λ3 − 3404865λ2 + 965478λ − 111025

3672 (10λ4 − 87λ3 + 307λ2 − 183λ + 25)

Again, partial fractions and projection gives

P (M∗

p̂ )−1(PM∗

ĝ h) = −5 (14943λ2 − 100930λ + 127125)

9962 (λ2 − 8λ + 25)

Now

M−1
p̂ P (M∗

p̂ )−1(PM∗

ĝ h) = −25 (14943λ2 − 100930λ + 127125)

4981(λ − 5)(λ − 2)

And so, once more projecting via partial fractions gives

PM−1
p̂ P (M∗

p̂ )−1(PM∗

ĝ h) = −25 (14943λ2 − 100930λ + 127125)

4981(λ − 5)(λ − 2)
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