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Engr210a Lecture 10: Hankel Operators and Model Reduction

e Hankel Operators

e Kronecker's theorem

e Discrete-time systems
e The Hankel norm

e Fundamental limitations
e Balanced realizations

e Balanced truncation
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Hankel Operators
Suppose GG has a minimal state-space system with D = (. The operator
['q: Ly(—00,0] — L0, 00) defined by [ = P+G}L2(_OO 0

is called the Hankel operator corresponding to G.
o P, : Ly(—00,00) = Lo(—00,0] is the projection operator

0 fort <0

(Pru)lt) = u(t) fort >0

o G‘L2<_0070] is G restricted to Ly(—o00,0)].
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Hankel Operators

Suppose GG has a minimal state-space system with D = (. The operator

¢ : Lo(—00, 0] — Ly0, 0) defined by o = P+G}L2(_OO 0

is called the Hankel operator corresponding to G.

Interpretation

o o=V, V,
e rank(I'¢) < n for a state-space system of order n.

e Interpretation: the state summarizes all the information about the past inputs neces-
sary to generate future outputs.
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Operator rank

Suppose A : U — V is a map between Hilbert spaces &/ and V. The rank of an operator
A is defined by

rank(A) = dim(image(A))
Notes
If A has finite rank, then the following hold:
o rank(A) = rank(A")
o If A:R" — U, then rank(A) = n — dim(ker(A)).
o rank(AB) = rank(A*AB). In particular, rank(A) = rank(A*A).

Controllability and Observability
o rank(Y,) = rank(V’'W,) = rank(V,) = n — dim(ker(¥,))

= dimension of the observable subspace

o rank(X,)=rank(V .U7) = rank(V,) = dim (image(\lfc))

= dimension of the controllable subspace



10 -5 Hankel Operators and Model Reduction 2001.10.30.04

Kronecker’s theorem

Suppose G is a linear system with Hankel operator ['¢;, and suppose rank(I'g) is finite.
Then a minimal realization of G has state-dimension equal to rank(I'). Equivalently,
for A € R"™",

(A, B,C, D) is minimal = rank(I'g) = n
Proof
We will use the fact that rank(I'¢) = rank(W,W.) = rank(W W, W U7)
= rank(Y,X,)

<= Sylvester's inequality gives
rank(I'g) = rank(Y,X,) < min{rank(Y},), rank(X,)}
hence the system is controllable and observable

— :  The other Sylvester inequality gives
rank(I'g) = rank(Y,X,) > rank(Y,) + rank(X,.) — n

=N
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Discrete-time systems

Suppose we have the state-space system

z(t+1) = Ax(t) + Bu(t)
y(t) = Ca(t)

If G is stable, this defines a bounded linear operator G : l5(Z, ) — (5(Z). We can write
an infinite matrix description for it as follows.

y(0) 0 u(0)
y(1) CB 0 u(1)
y2)| = | CAB CB 0 u(2)
y(3) CA’B CAB CB 0 u(3)
Notes - - - R

e The matrix 5 is structured; it is constant on diagonal from top-left to bottom-right.
Such matrices are called Toeplitz matrices.

e G is Toeplitz if and only if GG is time-invariant.
e ( is lower-triangular if and only if G is causal.

e (- is unchanged by changes in state-space coordinates.
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Hankel operators in discrete-time

The controllability operator U, : /5(Z_) — R" is given by

u(—1)
_ _ 2 A3 u(—2)
£ =V — {=|B AB A* A°B .. ] u(—3)
The observability operator ¥, : R" — (5(Z+) is given by
)] [ C]
y(1) CA
y=" = y(2)| = |CA%] ¢
y(3) CA°

Then the Hankel operator is

[ OB CAB CA?B ...
CAB CA2B CA3B
o=V, = |CA2B CA3B CA*B
CA3B CA'B CAB
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Hankel operators in discrete-time

In discrete time, the Hankel operator is

[ CB CAB CA®B ...
CAB CA2B CA3B
o =U,0.= |CA2B CA’B CA*B
CA’B CA*B CA°B

Notes

e The infinite matrix [ corresponding to the Hankel operator is constant along diag-
onals from top-right to bottom-left. Such a matrix is called a Hankel matrix.

e The coefficients along any row or column are the impulse response coefficients.

e Hence we can construct I'; from experimental data. This leads to a method of
identification called subspace identification.

e [ is unchanged by changes in state-space coordinates. Recall

C —CT ! A — TAT ! B —TB
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Hankel operators

e The Hankel Operator is ' = ¥, V.., where

0
r=V.u — T = / e " Bu(r)dr
y = Vox — y(t) = Celx

e [hen we have

e In general, if G has impulse response g, then
t
u € L5)0,00), y = Gu — y(t) = / h(t — 7)u(T)dr
0

u € Ly(—00,0], y=Tgu — y(t) = /OOO h(t + 7)u(—7)dr

An integral operator with this structure is said to have Hankel structure.
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The Hankel norm
The Hankel norm of the system G is the induced-norm of its Hankel operator. It satisfies
1
HFG’H — ()\max<YvoAXVc)>2
In fact spec(I'5lg) = spec(Y,X.) U {0}.
Proof
1
o We know ||| = |TETal? = (p(TETa))?
o Also spec(I':l'g) = spec(W W W, U,
= spec(V> W, W . U7) U {0}
— SpeC(YoXc> U {O}
1 1
e The eigenvalues of Y, X, are real and positive, since spec(Y,X.) = spec(XZY,X?).
Notes

e The square-roots of the eigenvalues of I',I'; are called the Hankel singular values of
(G. They are usually written 01 > 09 > --- > 0,, > 0. Zero is not included.

e The Hankel singular values are independent of the state-space coordinates.
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Coordinate invariance

e The controllability and observability gramians depend on the choice of coordinates in
state-space.

e However, the Hankel singular values are independent of the state-space coordinates.

o|f
B

Tz, then (A, B,C, D) transforms to (A, B,C, D) where A = TAT!,
TB,C =CT

Z

o v =VY.uimplies z =T1TV_.u, hence \ch = T'V,. Hence
X, =V U =TV U T
=TX.T"

Similarly, U, = ¥,7~! implies Y, = (T~ Yy, T
e As expected, Fe =0V, =V T TV, =0V, =T
e Also spec(Y,X,) = spec((T*) 'Y, T 'TX.T")
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Hankel Norm

The Hankel norm satisfies

ITall < |Gl
Proof
The projection P, has norm ||P.|| = 1. Hence
PGl = || PG e

< P—l—”‘ G‘LQ(—OO,O]H

- G‘LQ(—OO,O]H

< [|G]]
Interpretation

e [|G]l = sup [[Gul

lul=1

, the maximum norm of the total output

e ||I'¢|| = sup ||[I'gu||, the maximum norm of the output on ¢ > 0.

lul=1

2001.10.30.04
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Model reduction

Suppose GG € H,, has a minimal realization of dimension n. Given r < n, we would like
to find the G, € H,, which solves

minimize |G — G, ||

subject to (&, has state-dimension r

Notes
e Forany G and G,,
|G =G|l = [[Te-qc, | =IT'c— T,

This leads to the problem of optimal Hankel norm approximation

Optimal Hankel-norm approximation
Given I'¢, find an operator I : Lo(—00,0] — Ly|0, —0o0) which solves

minimize 1T — T, ||
subject to ['G. is the Hankel operator for some G, € H
rank(I'q ) =7
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Optimal Hankel-norm approximation

Given ['g, find an operator I : Lo(—00,0] — Ly[0, —0o0) which solves
minimize 1T — T ||
subject to ['G, is the Hankel operator for some G, € H
rank(l'g.) = r

Notes

e Suppose [ Ghankeloptima 1S the optimal. Then for any system G, of order r,

|G =G| = ITe — Te ||

2 HFG - 1_WGhankeI—optimaI H
e So if we can solve the optimal Hankel-norm approximation problem, then we have a

lower-bound on the best-possible error achievable in the induced-norm for the model
reduction problem.
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Optimal Hankel-norm approximation

Given ['g, find an operator I : Lo(—00,0] — Ly[0, —0o0) which solves

minimize 1T — T ||

subject to ['G, is the Hankel operator for some G, € H

rank(l'g.) = r
Relaxed problem

Given I'¢, find an operator W : Ly(—00,0] — Ly|0, —00) which solves

minimize |l — W]
subject to rank(W) =r

Notes

2001.10.30.04

e This is just a minimal-rank approximation problem; for matrices we can use SVD.

¢ We have HFG o 1—wGhankeI—optimaIH Z HPG o Wopt
Hankel structure.

e Hence for any system G5, of order r,

|G =Gl 2 [ITa = Wopl|

|, since in general W, will not have
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Minimal rank » matrix approximation
Recall the optimal rank approximation problem. Given A € C"™*",
minimize |A — Bl
subject to rank(B) =r

Singular value decomposition
Given A € C"*", we can decompose it into the singular value decomposition (SVD)
A=UXV"
where U € C"™*™ is unitary, V € C"*" is unitary, 2 € R"*" is diagonal.
Notes
® ) =0, ordered so that 0y > 09 > -+ - > Tpinfim, n)-

e The optimal B satisfies ||A — Bopt|| = 0541.

k

*

o Bopt = E O U;V;
i=1
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Theorem

Suppose GG has a minimal realization of order n. Then for any GG, of order » < n,
|G — G| = 041

where 01 > 09 > -+ - > 0, > 0 are the Hankel singular values of G.

Proof
e We show that |I'¢ — W|| > o,41 if rank(W) = r.

o Let ['¢ =V, VU, and define P, : [5[0,00) — C" and P.: C" — Ly(—00,0] by
P—Y, W P —UiX,?
Note that ||P,|| = || P.|| = 1. Then
T =W = |Pl[[Te = WIIE] = [Po(Te — W) E]

1
2

1
= ||Y, 200, 0,04 X, 2 — PP,

1 1
— )/OQXCQ_POWPCH

o rank(P,WP,.) <r, since rank(WW) < r, hence

DO —

L1 L1 1 1
HY02X02 _ POWPCH Z Ur+1<Y02X02> — ()\H—l(YZ)QXcYOQ)) — Or+1
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Bounds on the model reduction error

We have seen the lower-bound
HG _ GTH > Or41

No (&, of order r can do better than this.

Example

Mechanical system with state-dimension 40.

2001.10.30.04

Hankel singular values
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Ellipsoids example

0 —1.25 1.2
A= 4 —6 b= [4.48]
C' = [20 0]

The controllability and observability ellipsoids are
E.={Vu; |u| <1} ={zeR"; 2" X'z <1}
E,={zeR" ; Vx| <1} ={z eR" | 2'Vx <1}

Notes
e The ellipsoids are almost aligned. 8 ‘ ‘ oottt Simeod
6 \ V )\C —— observability ellipsoid ||
e Even though some states are weakly ob- \& .
servable, they are also strongly control- * & Vo
lable. ’ NN
0
e |nput-to-state map W, has worst-case \
. -2
scaling v/ \..
-4
e State-to-output map W, has worst-case 5
scaling v/ )\, ) N



10 - 20 Hankel Operators and Model Reduction 2001.10.30.04
Balanced realizations
Recall that under state-transformation 7',

X, - TXT* Y,— (T, 7!

If the realization (A, B, C, D) is controllable and observable, then we can choose state-
space coordinates in which the controllability and observability gramians are equal and
diagonal. A realization with this property is called a balanced realization.

Construction
e Using the eigenvalue decomposition for symmetric matrices (or SVD)
XY X? = USAU*
where U is unitary and X is diagonal, positive definite.
o Hence N30 X?Y X2UY 2 = ¥
o Let 77! = X2US 2. Then the above states that (T1y*YT~1 =%, Also
2

e Hence in the new coordinates, X, =Y, = ¥ = diag(oy, ..., 0,).
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Balanced realizations

e Every system GG € H., has a minimal balanced realization.

e In the balanced realization, the controllability and observability Gramians are equal.
Hence strongly controllable states are also strongly observable, and weakly control-
lable states are also weakly observable.

01
g9

X, =Y, =

On

e \We can always choose the ordering so that o; > 0;,1.

e Hence we might expect that removing the weakly observable and weakly controllable
states would result in a low model-reduction error. This turns out to be the case.
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Balanced truncation

Given GG or order n, we wish to find a reduced-order model of order r < n. Suppose
D =0, and A, B, C'is a balanced realization for G. Partition matrices A, B, C' as

A Ap By
A= B = = |C] C
[A21 Am] [32] C=1c G

where A;; € R"™*". The reduced order model will be

A A | B
o[ 48

This reduced-order model is called a balanced truncation of (5.

Notes
e Assume 0, > 0,,1. Ihat s, these singular values must not be equal.

e We will show that G, is stable and balanced, and derive an upper bound on the
modeling error

HG_GTH

e The method of truncation is an example of a Galerkin projection of the differential
equations onto a particular basis; the basis we are using is that spanned by the r
most controllable and observable states.



