Engr210a Lecture 10: Hankel Operators and Model Reduction

- Hankel Operators
- Kronecker's theorem
- Discrete-time systems
- The Hankel norm
- Fundamental limitations
- Balanced realizations
- Balanced truncation

Hankel Operators

Suppose G has a minimal state-space system with D = 0. The operator

 $\Gamma_G: L_2(-\infty, 0] \to L_2[0, \infty)$ defined by $\Gamma_G = P_+G|_{L_2(-\infty, 0]}$

is called the Hankel operator corresponding to G.

• $P_+: L_2(-\infty,\infty) \to L_2(-\infty,0]$ is the projection operator

$$(P_{+}u)(t) = \begin{cases} 0 & \text{for } t < 0\\ u(t) & \text{for } t \ge 0 \end{cases}$$

•
$$G|_{L_2(-\infty,0]}$$
 is G restricted to $L_2(-\infty,0]$.

Hankel Operators

Suppose G has a minimal state-space system with D = 0. The operator

 $\Gamma_G: L_2(-\infty, 0] \to L_2[0, \infty)$ defined by $\Gamma_G = P_+G|_{L_2(-\infty, 0]}$

is called the Hankel operator corresponding to G.

Interpretation

- $\Gamma_G = \Psi_o \Psi_c$
- $\operatorname{rank}(\Gamma_G) \leq n$ for a state-space system of order n.
- Interpretation: the state summarizes all the information about the past inputs necessary to generate future outputs.

Operator rank

Suppose $A : \mathcal{U} \to \mathcal{V}$ is a map between Hilbert spaces \mathcal{U} and \mathcal{V} . The *rank* of an operator A is defined by

 $\operatorname{rank}(A) = \dim(\operatorname{image}(A))$

Notes

If A has finite rank, then the following hold:

- $\operatorname{rank}(A) = \operatorname{rank}(A^*)$
- If $A : \mathbb{R}^n \to \mathcal{U}$, then $\operatorname{rank}(A) = n \dim(\ker(A))$.
- $\operatorname{rank}(AB) = \operatorname{rank}(A^*AB)$. In particular, $\operatorname{rank}(A) = \operatorname{rank}(A^*A)$.

Controllability and Observability

• $\operatorname{rank}(Y_o) = \operatorname{rank}(\Psi_o^* \Psi_o) = \operatorname{rank}(\Psi_o) = n - \dim(\ker(\Psi_o))$ = dimension of the observable subspace

Kronecker's theorem

Suppose G is a linear system with Hankel operator Γ_G , and suppose $\operatorname{rank}(\Gamma_G)$ is finite. Then a minimal realization of G has state-dimension equal to $\operatorname{rank}(\Gamma_G)$. Equivalently, for $A \in \mathbb{R}^{n \times n}$,

(A, B, C, D) is minimal \iff $\operatorname{rank}(\Gamma_G) = n$

Proof

We will use the fact that $\operatorname{rank}(\Gamma_G) = \operatorname{rank}(\Psi_o \Psi_c) = \operatorname{rank}(\Psi_o^* \Psi_o \Psi_c \Psi_c^*)$ = $\operatorname{rank}(Y_o X_c)$

 \iff : Sylvester's inequality gives

 $\operatorname{rank}(\Gamma_G) = \operatorname{rank}(Y_o X_c) \le \min\{\operatorname{rank}(Y_o), \operatorname{rank}(X_c)\}$

hence the system is controllable and observable

 \implies : The other Sylvester inequality gives

$$\operatorname{rank}(\Gamma_G) = \operatorname{rank}(Y_o X_c) \ge \operatorname{rank}(Y_o) + \operatorname{rank}(X_c) - n$$

$$= n$$

Discrete-time systems

Suppose we have the state-space system

$$\begin{aligned} x(t+1) &= Ax(t) + Bu(t) \\ y(t) &= Cx(t) \end{aligned}$$

If G is stable, this defines a bounded linear operator $G : \ell_2(\mathbb{Z}_+) \to \ell_2(\mathbb{Z}_+)$. We can write an *infinite matrix* description for it as follows.

$$\begin{bmatrix} y(0) \\ y(1) \\ y(2) \\ y(3) \\ \vdots \end{bmatrix} = \begin{bmatrix} 0 & & & \\ CB & 0 & & \\ CAB & CB & 0 & \\ CA^2B & CAB & CB & 0 & \\ \vdots & & \ddots \end{bmatrix} \begin{bmatrix} u(0) \\ u(1) \\ u(2) \\ u(3) \\ \vdots \end{bmatrix}$$

- The matrix G is structured; it is constant on diagonal from top-left to bottom-right. Such matrices are called *Toeplitz* matrices.
- G is Toeplitz if and only if G is time-invariant.
- G is lower-triangular if and only if G is causal.
- *G* is unchanged by changes in state-space coordinates.

Hankel operators in discrete-time

The controllability operator $\Psi_c: \ell_2(\mathbb{Z}_-) \to \mathbb{R}^n$ is given by

$$\xi = \Psi_c u \qquad \Longleftrightarrow \qquad \xi = \begin{bmatrix} B & AB & A^2 & A^3B & \dots \end{bmatrix} \begin{bmatrix} u(-1) \\ u(-2) \\ u(-3) \\ \vdots \end{bmatrix}$$

The observability operator $\Psi_o: \mathbb{R}^n \to \ell_2(\mathbb{Z}+)$ is given by

$$y = \Psi_o \xi \qquad \Longleftrightarrow \qquad \begin{bmatrix} y(0) \\ y(1) \\ y(2) \\ y(3) \\ \vdots \end{bmatrix} = \begin{bmatrix} C \\ CA \\ CA^2 \\ CA^3 \\ \vdots \end{bmatrix} \xi$$

Then the Hankel operator is

$$\Gamma_G = \Psi_o \Psi_c = \begin{bmatrix} CB & CAB & CA^2B & \dots \\ CAB & CA^2B & CA^3B \\ CA^2B & CA^3B & CA^4B \\ CA^3B & CA^4B & CA^5B \\ \vdots & & \ddots \end{bmatrix}$$

Hankel operators in discrete-time

In discrete time, the Hankel operator is

$$\Gamma_G = \Psi_o \Psi_c = \begin{bmatrix} CB & CAB & CA^2B & \dots \\ CAB & CA^2B & CA^3B \\ CA^2B & CA^3B & CA^4B \\ CA^3B & CA^4B & CA^5B \\ \vdots & & \ddots \end{bmatrix}$$

- The infinite matrix Γ_G corresponding to the Hankel operator is constant along diagonals from top-right to bottom-left. Such a matrix is called a *Hankel matrix*.
- The coefficients along any row or column are the impulse response coefficients.
- Hence we can construct Γ_G from experimental data. This leads to a method of identification called *subspace identification*.
- Γ_G is unchanged by changes in state-space coordinates. Recall

$$C \to CT^{-1} \qquad A \to TAT^{-1} \qquad B \to TB$$

Hankel operators

• The Hankel Operator is $\Gamma_G = \Psi_o \Psi_c$, where

$$\begin{aligned} x &= \Psi_c u \qquad \Longrightarrow \qquad \qquad x &= \int_{-\infty}^0 e^{-A\tau} B u(\tau) \, d\tau \\ y &= \Psi_o x \qquad \Longrightarrow \qquad \qquad y(t) &= C e^{At} x \end{aligned}$$

• Then we have

$$\Gamma_G u = \int_{-\infty}^0 C e^{At-\tau} B u(\tau) \, d\tau$$
$$= \int_0^\infty C e^{A(t+\tau)} B u(-\tau) \, d\tau$$

• In general, if G has impulse response g, then

$$u \in L_2[0,\infty), \ y = Gu \qquad \Longrightarrow \qquad y(t) = \int_0^t h(t-\tau)u(\tau) \, d\tau$$
$$u \in L_2(-\infty,0], \ y = \Gamma_G u \qquad \Longrightarrow \qquad y(t) = \int_0^\infty h(t+\tau)u(-\tau) \, d\tau$$

An integral operator with this structure is said to have *Hankel structure*.

The Hankel norm

The Hankel norm of the system G is the induced-norm of its Hankel operator. It satisfies

$$\left|\Gamma_{G}\right\| = \left(\lambda_{\max}(Y_{o}X_{c})\right)^{\frac{1}{2}}$$

In fact spec $(\Gamma_G^*\Gamma_G) = \operatorname{spec}(Y_oX_c) \cup \{0\}.$

Proof

• We know $\|\Gamma_G\| = \|\Gamma_G^*\Gamma_G\|^{\frac{1}{2}} = \left(\rho(\Gamma_G^*\Gamma_G)\right)^{\frac{1}{2}}$

• Also
$$\operatorname{spec}(\Gamma_G^*\Gamma_G) = \operatorname{spec}(\Psi_c^*\Psi_o^*\Psi_o\Psi_c)$$

= $\operatorname{spec}(\Psi_o^*\Psi_o\Psi_c\Psi_c^*) \cup \{0\}$
= $\operatorname{spec}(Y_oX_c) \cup \{0\}$

• The eigenvalues of $Y_o X_c$ are real and positive, since $\operatorname{spec}(Y_o X_c) = \operatorname{spec}(X_c^{\frac{1}{2}} Y_o X_c^{\frac{1}{2}})$.

- The square-roots of the eigenvalues of Γ^{*}_GΓ_G are called the *Hankel singular values* of G. They are usually written σ₁ ≥ σ₂ ≥ ··· ≥ σ_n > 0. Zero is not included.
- The Hankel singular values are independent of the state-space coordinates.

Coordinate invariance

- The controllability and observability gramians depend on the choice of coordinates in state-space.
- However, the Hankel singular values are independent of the state-space coordinates.
- If z = Tx, then (A, B, C, D) transforms to $(\tilde{A}, \tilde{B}, \tilde{C}, D)$ where $\tilde{A} = TAT^{-1}$, $\tilde{B} = TB$, $\tilde{C} = CT^{-1}$.
- $x = \Psi_c u$ implies $z = T\Psi_c u$, hence $\tilde{\Psi}_c = T\Psi_c$. Hence $\tilde{X}_c = \tilde{\Psi}_c \tilde{\Psi}_c^* = T\Psi_c \Psi_c^* T^*$

$$\begin{aligned} \Lambda_c &= \Psi_c \Psi_c = I \ \Psi_c \Psi_c \\ &= T X_c T^* \end{aligned}$$

Similarly, $\tilde{\Psi}_o = \Psi_o T^{-1}$ implies $\tilde{Y}_o = (T^*)^{-1} Y_o T^{-1}$.

• As expected, $\tilde{\Gamma}_G = \tilde{\Psi}_o \tilde{\Psi}_c = \Psi_o T^{-1} T \Psi_c = \Psi_o \Psi_c = \Gamma_G.$

• Also
$$\operatorname{spec}(\tilde{Y}_o \tilde{X}_c) = \operatorname{spec}((T^*)^{-1} Y_o T^{-1} T X_c T^*)$$

= $\operatorname{spec}((T^*)^{-1} Y_o X_c T^*)$
= $\operatorname{spec}(Y_o X_c)$

Hankel Norm

The Hankel norm satisfies

 $\|\Gamma_G\| \le \|G\|$

Proof

The projection P_+ has norm $||P_+|| = 1$. Hence

$$\Gamma_{G} \| = \left\| P_{+}G \right|_{L_{2}(-\infty,0]} \|$$

$$\leq \| P_{+} \| \left\| G \right|_{L_{2}(-\infty,0]} \|$$

$$= \left\| G \right|_{L_{2}(-\infty,0]} \|$$

$$\leq \| G \|$$

Interpretation

• $||G|| = \sup_{\|u\|=1} ||Gu||$, the maximum norm of the total output

• $\|\Gamma_G\| = \sup_{\|u\|=1} \|\Gamma_G u\|$, the maximum norm of the output on t > 0.

Model reduction

Suppose $G \in H_{\infty}$ has a minimal realization of dimension n. Given r < n, we would like to find the $G_r \in H_{\infty}$ which solves

minimize
$$||G - G_r||$$

subject to G_r has state-dimension r

Notes

• For any G and G_r ,

$$||G - G_r|| \ge ||\Gamma_{G - G_r}|| = ||\Gamma_G - \Gamma_{G_r}||$$

This leads to the problem of optimal Hankel norm approximation

Optimal Hankel-norm approximation

Given Γ_G , find an operator $\Gamma_{G_r} : L_2(-\infty, 0] \to L_2[0, -\infty)$ which solves minimize $\|\Gamma_G - \Gamma_{G_r}\|$ subject to Γ_{G_r} is the Hankel operator for some $G_r \in H_\infty$ $\operatorname{rank}(\Gamma_{G_r}) = r$

Optimal Hankel-norm approximation

Given Γ_G , find an operator $\Gamma_{G_r} : L_2(-\infty, 0] \to L_2[0, -\infty)$ which solves minimize $\|\Gamma_G - \Gamma_{G_r}\|$

subject to Γ_{G_r} is the Hankel operator for some $G_r \in H_\infty$ rank $(\Gamma_{G_r}) = r$

Notes

• Suppose $\Gamma_{G_{\text{hankel-optimal}}}$ is the optimal. Then for any system G_r of order r,

$$\begin{aligned} \|G - G_r\| &\geq \|\Gamma_G - \Gamma_{G_r}\| \\ &\geq \|\Gamma_G - \Gamma_{G_{\mathsf{hankel-optimal}}}\| \end{aligned}$$

• So if we can solve the optimal Hankel-norm approximation problem, then we have a lower-bound on the best-possible error achievable in the induced-norm for the model reduction problem.

Optimal Hankel-norm approximation

Given Γ_G , find an operator $\Gamma_{G_r} : L_2(-\infty, 0] \to L_2[0, -\infty)$ which solves minimize $\|\Gamma_G - \Gamma_{G_r}\|$ subject to Γ_{G_r} is the Hankel operator for some $G_r \in H_\infty$ $\operatorname{rank}(\Gamma_{G_r}) = r$

Relaxed problem

Given Γ_G , find an operator $W: L_2(-\infty, 0] \to L_2[0, -\infty)$ which solves

minimize	$\ \Gamma_G - W\ $
subject to	$\operatorname{rank}(W) = r$

- This is just a minimal-rank approximation problem; for matrices we can use SVD.
- We have $\|\Gamma_G \Gamma_{G_{\text{hankel-optimal}}}\| \ge \|\Gamma_G W_{\text{opt}}\|$, since in general W_{opt} will not have Hankel structure.
- Hence for any system G_r of order r,

$$\|G - G_r\| \ge \|\Gamma_G - W_{\mathsf{opt}}\|$$

Minimal rank r matrix approximation

Recall the optimal rank approximation problem. Given $A \in \mathbb{C}^{m \times n}$,

 $\begin{array}{ll} \mbox{minimize} & \|A - B\| \\ \mbox{subject to} & \mbox{rank}(B) = r \end{array}$

Singular value decomposition

Given $A \in \mathbb{C}^{m \times n}$, we can decompose it into the singular value decomposition (SVD)

 $A = U\Sigma V^*$

where $U \in \mathbb{C}^{m \times m}$ is unitary, $V \in \mathbb{C}^{n \times n}$ is unitary, $\Sigma \in \mathbb{R}^{m \times n}$ is diagonal.

- $\Sigma_{ii} = \sigma_i$, ordered so that $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_{\min\{m,n\}}$.
- The optimal B satisfies $||A B_{opt}|| = \sigma_{k+1}$.

•
$$B_{\text{opt}} = \sum_{i=1}^k \sigma_i u_i v_i^*$$

Theorem

Suppose G has a minimal realization of order n. Then for any G_r of order r < n,

$$\|G - G_r\| \ge \sigma_{r+1}$$

where $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_n > 0$ are the Hankel singular values of G.

Proof

- We show that $\|\Gamma_G W\| \ge \sigma_{r+1}$ if $\operatorname{rank}(W) = r$.
- Let $\Gamma_G = \Psi_o \Psi_c$, and define $P_o: L_2[0,\infty) \to \mathbb{C}^n$ and $P_c: \mathbb{C}^n \to L_2(-\infty,0]$ by

$$P_o = Y_o^{-\frac{1}{2}} \Psi_o^* \qquad P_c = \Psi_c^* X_c^{-\frac{1}{2}}$$

Note that $||P_o|| = ||P_c|| = 1$. Then

$$\begin{aligned} \|\Gamma_G - W\| &= \|P_o\| \|\Gamma_G - W\| \|P_c\| \ge \|P_o(\Gamma_G - W)P_c\| \\ &= \|Y_o^{-\frac{1}{2}} \Psi_o^* \Psi_o \Psi_c \Psi_c^* X_c^{-\frac{1}{2}} - P_o W P_c\| \\ &= \|Y_o^{\frac{1}{2}} X_c^{\frac{1}{2}} - P_o W P_c\| \end{aligned}$$

• $\operatorname{rank}(P_oWP_c) \le r$, since $\operatorname{rank}(W) \le r$, hence $\|Y_o^{\frac{1}{2}}X_c^{\frac{1}{2}} - P_oWP_c\| \ge \sigma_{r+1}(Y_o^{\frac{1}{2}}X_c^{\frac{1}{2}}) = (\lambda_{r+1}(Y_o^{\frac{1}{2}}X_cY_o^{\frac{1}{2}}))^{\frac{1}{2}} = \sigma_{r+1}$

Bounds on the model reduction error

We have seen the lower-bound

$$\|G - G_r\| \ge \sigma_{r+1}$$

No G_r of order r can do better than this.

Example

Mechanical system with state-dimension 40.

Ellipsoids example

$$A = \begin{bmatrix} 0 & -1.25 \\ 4 & -6 \end{bmatrix} \qquad \qquad B = \begin{bmatrix} 1.2 \\ 4.48 \end{bmatrix}$$
$$C = \begin{bmatrix} 20 & 0 \end{bmatrix}$$

The controllability and observability ellipsoids are

$$E_{c} = \left\{ \Psi_{c}u \; ; \; \|u\| \leq 1 \right\} = \left\{ x \in \mathbb{R}^{n} \; ; \; x^{*}X_{c}^{-1}x \leq 1 \right\}$$
$$E_{o} = \left\{ x \in \mathbb{R}^{n} \; ; \; \|\Psi_{o}x\| \leq 1 \right\} = \left\{ x \in \mathbb{R}^{n} \; | \; x^{*}Y_{o}x \leq 1 \right\}$$

- The ellipsoids are almost aligned.
- Even though some states are weakly observable, they are also strongly controllable.
- Input-to-state map Ψ_c has worst-case scaling $\sqrt{\lambda_c}$.
- State-to-output map Ψ_o has worst-case scaling $\sqrt{\lambda}_o$.

Balanced realizations

Recall that under state-transformation \boldsymbol{T} ,

 $X_c \to T X_c T^* \qquad Y_o \to (T^*)^{-1} Y_o T^{-1}$

If the realization (A, B, C, D) is controllable and observable, then we can choose statespace coordinates in which the controllability and observability gramians are equal and diagonal. A realization with this property is called a *balanced realization*.

Construction

• Using the eigenvalue decomposition for symmetric matrices (or SVD)

$$X^{\frac{1}{2}}YX^{\frac{1}{2}} = U\Sigma^{2}U^{*}$$

where U is unitary and Σ is diagonal, positive definite.

- Hence $\Sigma^{-\frac{1}{2}}U^*X^{\frac{1}{2}}YX^{\frac{1}{2}}U\Sigma^{-\frac{1}{2}} = \Sigma$
- Let $T^{-1} = X^{\frac{1}{2}}U\Sigma^{-\frac{1}{2}}$. Then the above states that $(T^{-1})^*YT^{-1} = \Sigma$. Also $TXT^* = (\Sigma^{\frac{1}{2}}U^*X^{-\frac{1}{2}}) X (X^{-\frac{1}{2}}U\Sigma^{\frac{1}{2}}) = \Sigma$.
- Hence in the new coordinates, $X_c = Y_o = \Sigma = \text{diag}(\sigma_1, \ldots, \sigma_n)$.

2001.10.30.04

Balanced realizations

- Every system $G \in H_{\infty}$ has a minimal balanced realization.
- In the balanced realization, the controllability and observability Gramians are equal. Hence strongly controllable states are also strongly observable, and weakly controllable states are also weakly observable.

$$X_c = Y_o = \begin{bmatrix} \sigma_1 & & \\ & \sigma_2 & \\ & & \ddots & \\ & & & \sigma_n \end{bmatrix}$$

- We can always choose the ordering so that $\sigma_i \geq \sigma_{i+1}$.
- Hence we might expect that removing the weakly observable and weakly controllable states would result in a low model-reduction error. This turns out to be the case.

Balanced truncation

Given G or order n, we wish to find a reduced-order model of order r < n. Suppose D = 0, and A, B, C is a balanced realization for G. Partition matrices A, B, C as

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \qquad B = \begin{bmatrix} B_1 \\ B_2 \end{bmatrix} \qquad C = \begin{bmatrix} C_1 & C_2 \end{bmatrix}$$

where $A_{11} \in \mathbb{R}^{r \times r}$. The reduced order model will be

$$\hat{G}_r(s) = \left[\begin{array}{c|c} A_{11} & B_1 \\ \hline C_1 & 0 \end{array} \right]$$

This reduced-order model is called a *balanced truncation* of G.

Notes

- Assume $\sigma_r > \sigma_{r+1}$. That is, these singular values must not be equal.
- \bullet We will show that G_r is stable and balanced, and derive an upper bound on the modeling error

$$\|G-G_r\|$$

• The method of *truncation* is an example of a *Galerkin projection* of the differential equations onto a particular basis; the basis we are using is that spanned by the *r* most controllable and observable states.