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Engr210a Lecture 10: Hankel Operators and Model Reduction

• Hankel Operators

• Kronecker’s theorem

• Discrete-time systems

• The Hankel norm

• Fundamental limitations

• Balanced realizations

• Balanced truncation
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Hankel Operators

Suppose G has a minimal state-space system with D = 0. The operator

ΓG : L2(−∞, 0] → L2[0,∞) defined by ΓG = P+G
∣∣
L2(−∞,0]

is called the Hankel operator corresponding to G.

• P+ : L2(−∞,∞) → L2(−∞, 0] is the projection operator

(P+u)(t) =

{
0 for t < 0

u(t) for t ≥ 0

• G
∣∣
L2(−∞,0]

is G restricted to L2(−∞, 0].
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Hankel Operators

Suppose G has a minimal state-space system with D = 0. The operator

ΓG : L2(−∞, 0] → L2[0,∞) defined by ΓG = P+G
∣∣
L2(−∞,0]

is called the Hankel operator corresponding to G.

Interpretation

L2[0, ∞)L2(−∞, 0]

R
n

ΓG

Ψc Ψo

• ΓG = ΨoΨc

• rank(ΓG) ≤ n for a state-space system of order n.

• Interpretation: the state summarizes all the information about the past inputs neces-
sary to generate future outputs.
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Operator rank

Suppose A : U → V is a map between Hilbert spaces U and V . The rank of an operator
A is defined by

rank(A) = dim
(
image(A)

)
Notes

If A has finite rank, then the following hold:

• rank(A) = rank(A∗)

• If A : Rn → U , then rank(A) = n − dim(ker(A)).

• rank(AB) = rank(A∗AB). In particular, rank(A) = rank(A∗A).

Controllability and Observability

• rank(Yo) = rank(Ψ∗
oΨo) = rank(Ψo) = n − dim(ker(Ψo))

= dimension of the observable subspace

• rank(Xc) = rank(ΨcΨ
∗
c) = rank(Ψc) = dim

(
image(Ψc)

)
= dimension of the controllable subspace
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Kronecker’s theorem

Suppose G is a linear system with Hankel operator ΓG, and suppose rank(ΓG) is finite.
Then a minimal realization of G has state-dimension equal to rank(ΓG). Equivalently,
for A ∈ Rn×n,

(A,B, C,D) is minimal ⇐⇒ rank(ΓG) = n

Proof

We will use the fact that rank(ΓG) = rank(ΨoΨc) = rank(Ψ∗
oΨoΨcΨ

∗
c)

= rank(YoXc)

⇐= : Sylvester’s inequality gives

rank(ΓG) = rank(YoXc) ≤ min{rank(Yo), rank(Xc)}
hence the system is controllable and observable

=⇒ : The other Sylvester inequality gives

rank(ΓG) = rank(YoXc) ≥ rank(Yo) + rank(Xc) − n

= n
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Discrete-time systems

Suppose we have the state-space system

x(t + 1) = Ax(t) + Bu(t)

y(t) = Cx(t)

If G is stable, this defines a bounded linear operator G : �2(Z+) → �2(Z+). We can write
an infinite matrix description for it as follows.


y(0)
y(1)
y(2)
y(3)

...


 =




0
CB 0

CAB CB 0
CA2B CAB CB 0

... . . .







u(0)
u(1)
u(2)
u(3)

...




Notes

• The matrix G is structured; it is constant on diagonal from top-left to bottom-right.
Such matrices are called Toeplitz matrices.

• G is Toeplitz if and only if G is time-invariant.

• G is lower-triangular if and only if G is causal.

• G is unchanged by changes in state-space coordinates.
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Hankel operators in discrete-time

The controllability operator Ψc : �2(Z−) → R
n is given by

ξ = Ψcu ⇐⇒ ξ =
[
B AB A2 A3B . . .

]



u(−1)
u(−2)
u(−3)

...




The observability operator Ψo : Rn → �2(Z+) is given by

y = Ψoξ ⇐⇒




y(0)
y(1)
y(2)
y(3)

...


 =




C
CA
CA2

CA3

...


 ξ

Then the Hankel operator is

ΓG = ΨoΨc =




CB CAB CA2B . . .
CAB CA2B CA3B
CA2B CA3B CA4B
CA3B CA4B CA5B

... . . .



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Hankel operators in discrete-time

In discrete time, the Hankel operator is

ΓG = ΨoΨc =




CB CAB CA2B . . .
CAB CA2B CA3B
CA2B CA3B CA4B
CA3B CA4B CA5B

... . . .




Notes

• The infinite matrix ΓG corresponding to the Hankel operator is constant along diag-
onals from top-right to bottom-left. Such a matrix is called a Hankel matrix.

• The coefficients along any row or column are the impulse response coefficients.

• Hence we can construct ΓG from experimental data. This leads to a method of
identification called subspace identification.

• ΓG is unchanged by changes in state-space coordinates. Recall

C → CT−1 A → TAT−1 B → TB
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Hankel operators

• The Hankel Operator is ΓG = ΨoΨc, where

x = Ψcu =⇒ x =

∫ 0

−∞
e−AτBu(τ ) dτ

y = Ψox =⇒ y(t) = CeAtx

• Then we have

ΓGu =

∫ 0

−∞
CeAt−τBu(τ ) dτ

=

∫ ∞

0

CeA(t+τ)Bu(−τ ) dτ

• In general, if G has impulse response g, then

u ∈ L2[0,∞), y = Gu =⇒ y(t) =

∫ t

0

h(t − τ )u(τ ) dτ

u ∈ L2(−∞, 0], y = ΓGu =⇒ y(t) =

∫ ∞

0

h(t + τ )u(−τ ) dτ

An integral operator with this structure is said to have Hankel structure.
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The Hankel norm

The Hankel norm of the system G is the induced-norm of its Hankel operator. It satisfies

‖ΓG‖ =
(
λmax(YoXc)

)1
2

In fact spec(Γ∗
GΓG) = spec(YoXc) ∪ {0}.

Proof

• We know ‖ΓG‖ = ‖Γ∗
GΓG‖1

2 =
(
ρ(Γ∗

GΓG)
)1

2

• Also spec(Γ∗
GΓG) = spec(Ψ∗

cΨ
∗
oΨoΨc)

= spec(Ψ∗
oΨoΨcΨ

∗
c) ∪ {0}

= spec(YoXc) ∪ {0}

• The eigenvalues of YoXc are real and positive, since spec(YoXc) = spec(X
1
2
c YoX

1
2
c ).

Notes

• The square-roots of the eigenvalues of Γ∗
GΓG are called the Hankel singular values of

G. They are usually written σ1 ≥ σ2 ≥ · · · ≥ σn > 0. Zero is not included.

• The Hankel singular values are independent of the state-space coordinates.
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Coordinate invariance

• The controllability and observability gramians depend on the choice of coordinates in
state-space.

• However, the Hankel singular values are independent of the state-space coordinates.

• If z = Tx, then (A, B, C,D) transforms to (Ã, B̃, C̃,D) where Ã = TAT−1,
B̃ = TB, C̃ = CT−1.

• x = Ψcu implies z = TΨcu, hence Ψ̃c = TΨc. Hence

X̃c = Ψ̃cΨ̃
∗
c = TΨcΨ

∗
cT

∗

= TXcT
∗

Similarly, Ψ̃o = ΨoT
−1 implies Ỹo = (T ∗)−1YoT

−1.

• As expected, Γ̃G = Ψ̃oΨ̃c = ΨoT
−1TΨc = ΨoΨc = ΓG.

• Also spec(ỸoX̃c) = spec
(
(T ∗)−1YoT

−1TXcT
∗)

= spec
(
(T ∗)−1YoXcT

∗)
= spec(YoXc)
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Hankel Norm

The Hankel norm satisfies
‖ΓG‖ ≤ ‖G‖

Proof

The projection P+ has norm ‖P+‖ = 1. Hence

‖ΓG‖ =
∥∥∥P+G

∣∣
L2(−∞,0]

∥∥∥
≤ ‖P+‖

∥∥∥G
∣∣
L2(−∞,0]

∥∥∥
=

∥∥∥G
∣∣
L2(−∞,0]

∥∥∥
≤ ‖G‖

Interpretation

• ‖G‖ = sup
‖u‖=1

‖Gu‖, the maximum norm of the total output

• ‖ΓG‖ = sup
‖u‖=1

‖ΓGu‖, the maximum norm of the output on t > 0.
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Model reduction

Suppose G ∈ H∞ has a minimal realization of dimension n. Given r < n, we would like
to find the Gr ∈ H∞ which solves

minimize ‖G − Gr‖
subject to Gr has state-dimension r

Notes

• For any G and Gr,

‖G − Gr‖ ≥ ‖ΓG−Gr‖ = ‖ΓG − ΓGr‖
This leads to the problem of optimal Hankel norm approximation

Optimal Hankel-norm approximation

Given ΓG, find an operator ΓGr : L2(−∞, 0] → L2[0,−∞) which solves

minimize ‖ΓG − ΓGr‖
subject to ΓGr is the Hankel operator for some Gr ∈ H∞

rank(ΓGr) = r
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Optimal Hankel-norm approximation

Given ΓG, find an operator ΓGr : L2(−∞, 0] → L2[0,−∞) which solves

minimize ‖ΓG − ΓGr‖
subject to ΓGr is the Hankel operator for some Gr ∈ H∞

rank(ΓGr) = r

Notes

• Suppose ΓGhankel-optimal
is the optimal. Then for any system Gr of order r,

‖G − Gr‖ ≥ ‖ΓG − ΓGr‖
≥ ‖ΓG − ΓGhankel-optimal

‖

• So if we can solve the optimal Hankel-norm approximation problem, then we have a
lower-bound on the best-possible error achievable in the induced-norm for the model
reduction problem.
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Optimal Hankel-norm approximation

Given ΓG, find an operator ΓGr : L2(−∞, 0] → L2[0,−∞) which solves

minimize ‖ΓG − ΓGr‖
subject to ΓGr is the Hankel operator for some Gr ∈ H∞

rank(ΓGr) = r

Relaxed problem

Given ΓG, find an operator W : L2(−∞, 0] → L2[0,−∞) which solves

minimize ‖ΓG − W‖
subject to rank(W ) = r

Notes

• This is just a minimal-rank approximation problem; for matrices we can use SVD.

• We have ‖ΓG − ΓGhankel-optimal
‖ ≥ ‖ΓG − Wopt‖, since in general Wopt will not have

Hankel structure.

• Hence for any system Gr of order r,

‖G − Gr‖ ≥ ‖ΓG − Wopt‖
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Minimal rank r matrix approximation

Recall the optimal rank approximation problem. Given A ∈ C
m×n,

minimize ‖A − B‖
subject to rank(B) = r

Singular value decomposition

Given A ∈ C
m×n, we can decompose it into the singular value decomposition (SVD)

A = UΣV ∗

where U ∈ C
m×m is unitary, V ∈ C

n×n is unitary, Σ ∈ R
m×n is diagonal.

Notes

• Σii = σi, ordered so that σ1 ≥ σ2 ≥ · · · ≥ σmin{m, n}.

• The optimal B satisfies ‖A − Bopt‖ = σk+1.

• Bopt =
k∑

i=1

σiuiv
∗
i
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Theorem

Suppose G has a minimal realization of order n. Then for any Gr of order r < n,

‖G − Gr‖ ≥ σr+1

where σ1 ≥ σ2 ≥ · · · ≥ σn > 0 are the Hankel singular values of G.

Proof

• We show that ‖ΓG − W‖ ≥ σr+1 if rank(W ) = r.

• Let ΓG = ΨoΨc, and define Po : L2[0,∞) → C
n and Pc : C

n → L2(−∞, 0] by

Po = Y
−1

2
o Ψ∗

o Pc = Ψ∗
cX

−1
2

c

Note that ‖Po‖ = ‖Pc‖ = 1. Then

‖ΓG − W‖ = ‖Po‖‖ΓG − W‖‖Pc‖ ≥ ‖Po(ΓG − W )Pc‖
= ‖Y −1

2
o Ψ∗

oΨoΨcΨ
∗
cX

−1
2

c − PoWPc‖
= ‖Y 1

2
o X

1
2
c − PoWPc‖

• rank(PoWPc) ≤ r, since rank(W ) ≤ r, hence

‖Y 1
2

o X
1
2
c − PoWPc‖ ≥ σr+1(Y

1
2

o X
1
2
c ) =

(
λr+1(Y

1
2

o XcY
1
2

o )
)1

2 = σr+1
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Bounds on the model reduction error

We have seen the lower-bound

‖G − Gr‖ ≥ σr+1

No Gr of order r can do better than this.

Example

Mechanical system with state-dimension 40.
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Ellipsoids example

A =

[
0 −1.25
4 −6

]
B =

[
1.2
4.48

]
C =

[
20 0

]
The controllability and observability ellipsoids are

Ec =
{
Ψcu ; ‖u‖ ≤ 1

}
=

{
x ∈ R

n ; x∗X−1
c x ≤ 1

}
Eo =

{
x ∈ R

n ; ‖Ψox‖ ≤ 1
}

=
{
x ∈ R

n | x∗Yox ≤ 1
}

Notes

• The ellipsoids are almost aligned.

• Even though some states are weakly ob-
servable, they are also strongly control-
lable.

• Input-to-state map Ψc has worst-case
scaling

√
λc.

• State-to-output map Ψo has worst-case
scaling

√
λo.
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Balanced realizations

Recall that under state-transformation T ,

Xc → TXcT
∗ Yo → (T ∗)−1YoT

−1

If the realization (A, B,C,D) is controllable and observable, then we can choose state-
space coordinates in which the controllability and observability gramians are equal and
diagonal. A realization with this property is called a balanced realization.

Construction

• Using the eigenvalue decomposition for symmetric matrices (or SVD)

X
1
2Y X

1
2 = UΣ2U ∗

where U is unitary and Σ is diagonal, positive definite.

• Hence Σ−1
2U ∗X

1
2Y X

1
2UΣ−1

2 = Σ

• Let T−1 = X
1
2UΣ−1

2. Then the above states that (T−1)∗Y T−1 = Σ. Also

TXT ∗ = (Σ
1
2U ∗X−1

2) X (X−1
2UΣ

1
2) = Σ.

• Hence in the new coordinates, Xc = Yo = Σ = diag(σ1, . . . , σn).
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Balanced realizations

• Every system G ∈ H∞ has a minimal balanced realization.

• In the balanced realization, the controllability and observability Gramians are equal.
Hence strongly controllable states are also strongly observable, and weakly control-
lable states are also weakly observable.

Xc = Yo =




σ1

σ2
. . .

σn




• We can always choose the ordering so that σi ≥ σi+1.

• Hence we might expect that removing the weakly observable and weakly controllable
states would result in a low model-reduction error. This turns out to be the case.
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Balanced truncation

Given G or order n, we wish to find a reduced-order model of order r < n. Suppose
D = 0, and A, B, C is a balanced realization for G. Partition matrices A, B, C as

A =

[
A11 A12

A21 A22

]
B =

[
B1

B2

]
C =

[
C1 C2

]
where A11 ∈ R

r×r. The reduced order model will be

Ĝr(s) =

[
A11 B1

C1 0

]
This reduced-order model is called a balanced truncation of G.

Notes

• Assume σr > σr+1. That is, these singular values must not be equal.

• We will show that Gr is stable and balanced, and derive an upper bound on the
modeling error

‖G − Gr‖
• The method of truncation is an example of a Galerkin projection of the differential

equations onto a particular basis; the basis we are using is that spanned by the r
most controllable and observable states.


