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Engr210a Lecture 11: Hankel Operators and Model Reduction

• Stability of balanced truncation

• Inner functions.

• Error-bounds for balanced truncation.

• Examples.

• Singular perturbation.

• Optimal Hankel-norm approximation.

• Optimal induced-norm model reduction.
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Balanced truncation

Given G of order n, we wish to find a reduced-order model of order r < n. Suppose
D = 0, and A, B, C is a balanced realization for G. Partition matrices A, B, C as

A =

[
A11 A12

A21 A22

]
B =

[
B1

B2

]
C =

[
C1 C2

]

where A11 ∈ R
r×r. The reduced order model will be

Ĝr =

[
A11 B1

C1 0

]

This reduced-order model is called a balanced truncation of G.

Notes

• Assume σr > σr+1. That is, these singular values must not be equal.

• We will show that Gr is stable and balanced, and derive an upper bound on the
modeling error

‖G − Gr‖
• The method of truncation is an example of a Galerkin projection of the differential

equations onto a particular basis; the basis we are using is that spanned by the r
most controllable and observable states.
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Stability of Balanced Truncation

Suppose (A, B,C, 0) is a minimal balanced realization for the stable system G with
state-dimension n. Suppose (A11, B1, C1, 0) is the balanced truncation of G with state-
dimension r < n, and assume σr > σr+1. Then

(i) A11 is Hurwitz

(ii) (A11, B1, C1, 0) is balanced.

Proof: The Lyapunov equations for controllability and observability are[
A∗

11 A∗
21

A∗
12 A∗

22

] [
Σ1 0
0 Σ2

]
+

[
Σ1 0
0 Σ2

] [
A11 A12

A21 A22

]
+

[
C∗

1

C∗
2

] [
C1 C2

]
= 0

[
A11 A12

A21 A22

] [
Σ1 0
0 Σ2

]
+

[
Σ1 0
0 Σ2

] [
A∗

11 A∗
21

A∗
12 A∗

22

]
+

[
B1

B2

] [
B∗

1 B∗
2

]
= 0

The (1,1) blocks of this matrix equation are

A∗
11Σ1 + Σ1A11 + C∗

1C1 = 0

A11Σ1 + Σ1A
∗
11 + B1B

∗
1 = 0

Hence if A11 is Hurwitz, then (A11, B1, C1, 0) is balanced, with Hankel singular values
σ1, . . . , σr. This proves part (ii) if part (i) holds.
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Proof of Stability of Balanced Truncation, continued

• We wish to prove that A11 is Hurwitz.

• Suppose A11v = λv. Then

v∗(A∗
11Σ1 + Σ1A11 + C∗

1C1)v = 0

=⇒ 2 Re(λ) = −v∗C∗
1C1v

v∗Σ1v
≤ 0

• So all we need to show is that A11 cannot have any imaginary eigenvalues.

• We will prove this by contradiction. Suppose A11 has an imaginary eigenvalue, and
let V =

[
v1 . . . vp

] ∈ Rn×p satisfy

image(V ) = ker(jωI − A11) =⇒ A11V = jωV

Then the above argument shows v∗i C
∗
1C1vi = 0 for i = 1, . . . , p, which implies

C1V = 0. Then

(A∗
11Σ1 + Σ1A11 + C∗

1C1)V = 0

=⇒ A∗
11Σ1V = −jωΣ1V



11 - 5 Balanced Truncation and Model Reduction 2001.11.07.01

Proof of Stability of Balanced Truncation, continued

• So far, we have A11V = jωV , and A∗
11Σ1V = −jωΣ1V .

• We know V ∗Σ1(A11Σ1 + Σ1A
∗
11 + B1B

∗
1)Σ1V = 0

=⇒ jωV ∗Σ3
1V1 − jωV ∗Σ3

1V1 + V ∗Σ1B1B
∗
1Σ1V = 0

=⇒ B∗
1Σ1V = 0

• Hence (A11Σ1 + Σ1A
∗
11 + B1B

∗
1)Σ1V = 0

=⇒ (A11 − jωI)Σ2
1V = 0

=⇒ image(Σ2
1V ) ⊆ ker(jωI − A11) = image(V )

• Hence V is an invariant subspace of Σ2
1. Hence there exists q ∈ image(V ) such that

Σ2
1q = σ2

i q

for some i with 1 ≤ i ≤ r.

• Since q ∈ image(V ), we have A11q = jωq. We will show that[
A11 A12

A21 A22

] [
q
0

]
= jω

[
q
0

]
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Proof of Stability of Balanced Truncation, continued

• The Lyapunov equations for controllability and observability give([
A∗

11 A∗
21

A∗
12 A∗

22

] [
Σ1 0
0 Σ2

]
+

[
Σ1 0
0 Σ2

] [
A11 A12

A21 A22

]
+

[
C∗

1

C∗
2

] [
C1 C2

]) [
q
0

]
= 0

([
A11 A12

A21 A22

] [
Σ1 0
0 Σ2

]
+

[
Σ1 0
0 Σ2

] [
A∗

11 A∗
21

A∗
12 A∗

22

]
+

[
B1

B2

] [
B∗

1 B∗
2

])[
Σ1q
0

]
= 0

• q ∈ image(V ) implies C1q = 0 and B∗
1Σ1q = 0. The above equations then give

A∗
12Σ1q + Σ2A21q = 0

A21σ
2
i q + Σ2A

∗
12Σ1q = 0

which implies Σ2
2A21q = σ2

i A21q. But we know 1 ≤ i ≤ r and Σ1 and Σ2 have no
common eigenvalues, so A21q = 0.

• Hence [
A11 A12

A21 A22

] [
q
0

]
= jω

[
q
0

]

which means that A has an imaginary eigenvalue, which is a contradiction.

• Note that if Σ1 and Σ2 have common eigenvalues (σr = σr+1) , then A11 can be
unstable.
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Inner functions

A transfer function Û ∈ H∞ which satisfies(
Û(jω)

)∗
Û(jω) = I for all ω ∈ R

is called an inner function.

Notes

• If Ĝ(jω) =
(
Û(jω)

)∗
then MĜ = M ∗

Û
.

• MÛ is an isometry, since 〈MÛx,MÛx〉 = 〈x,M ∗
Û
MÛx〉

= 〈x, x〉

• σ̄
(
Û(jω)

)
= σ̄

((
Û (jω)

)∗
Û (jω)

)1
2

= 1 for all ω ∈ R

The transfer function has unit gain at every frequency. For this reason, inner functions
are also called all-pass functions.
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Para-hermitian conjugate

Suppose Û has realization (A, B,C, D). Then

Û∼ =

[ −A∗ −C∗

B∗ D∗

]

is called the para-hermitian conjugate of Û .

Notes

• Û∼(jω) =
(
Û(jω)

)∗
for all ω ∈ R.

• If Û ∈ H∞, then Û∼ is analytic on the closed left-half plane. The matrix −A∗ is
unstable if A is stable.
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State-space test for inner functions

Suppose Ĝ ∈ H∞ has a realization (A, B,C,D) where A is Hurwitz. Let Yo be the
observability gramian for (A, C). Then

C∗D + YoB = 0 =⇒ (
Û (s)

)∗
Û(s) = D∗D for all s ∈ C

Proof

A realization for Û∼Û is

Û∼Û =


 −A∗ −C∗C

0 A
−C∗D

B
B∗ D∗C D∗D




Changing state-space coordinates under transformation T =

[
I −Yo

0 I

]
gives

Û∼Û =


 −A∗ −(A∗Yo + YoA + C∗C) −(C∗D + YoB)

0 A B
B∗ D∗C + B∗Yo D∗D


 =


 −A∗ 0 0

0 A B
B∗ 0 D∗D




All states in this realization are either uncontrollable or unobservable.
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Error-bounds for balanced truncation

Assume

• (A, B,C, 0) is a balanced realization for G, with order n.

This implies A is Hurwitz, and (A, B, C, 0) is minimal.

• Gr is the balanced truncation of G, with realization (A11, B1, C1, 0) and order r.

• The Hankel singular values of G satisfy σi = σr+1 for i = r+1, . . . , n and σr > σr+1.

That is,

Yo = Xc = Σ =

[
Σ1 0
0 σr+1I

]
where Σ1 =




σ1

σ2
. . .

σr




Theorem

The induced-norm error between G and Gr satisfies

‖G − Gr‖ ≤ 2σr+1
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Proof

• Let F = G − Gr be the error system. F has realization

F̂ =




A11 0 0 B1

0 A11 A12 B1

0 A21 A22 B2

−C1 C1 C2 0




By the previous result, A11 is Hurwitz, so F is stable also.

• The idea of the proof is to add inputs and outputs to the system to create a new
transfer function

Ê(s) =

[
F̂ (s) Ê12(s)

Ê21(s) Ê22(s)

]

which is inner. This is called an all-pass dilation of F .

• Clearly ‖F‖ ≤ ‖E‖.
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Proof, continued

• Using state coordinate transformation

T =


I I 0

I −I 0
0 0 I


 results in F̂ =




A11 0 A12/2 B1

0 A11 −A12/2 0
A21 −A21 A22 B2

0 −2C1 C2 0




• The all-pass dilation is

Ê(s) =




A11 0 A12/2 B1 0
0 A11 −A12/2 0 σr+1Σ

−1
1 C∗

1

A21 −A21 A22 B2 −C∗
2

0 −2C1 C2 0 2σr+1I
−2σr+1B

∗
1Σ

−1
1 0 −B∗

2 2σr+1I 0




which has observability gramian Ȳo =


4σ2

r+1Σ
−1
1 0 0

0 4Σ1 0
0 0 2σr+1I




• One can verify this is inner, with
(
Ê(jω)

)∗
Ê(jω) = 4σ2

r+1.

• Hence ‖G − Gr‖ = ‖F‖ ≤ ‖E‖ = 2σr+1.
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General error-bounds for balanced truncation

Assume

• (A, B,C, 0) is a balanced realization for G, with order n.

This implies A is Hurwitz, and (A, B, C, 0) is minimal.

• Gr is the balanced truncation of G, with realization (A11, B1, C1, 0) and order r.

• The Hankel singular values of G satisfy σr > σr+1.

Let Σ =

[
Σ1 0
0 Σ2

]
where

Σ1 =




σ1

σ2
. . .

σr


 Σ2 =




σt
1I

σt
2I

. . .
σt

kI




and the σt are distinct.

Theorem

The induced-norm error between G and Gr satisfies

‖G − Gr‖ ≤ 2(σt
1 + · · · + σt

k)
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Theorem

The induced-norm error between G and Gr satisfies

‖G − Gr‖ ≤ 2(σt
1 + · · · + σt

k)

Proof

• Truncate the states corresponding to σt
k, σ

t
k−1, . . . , σ

t
1.

• Let G(k) = G.

• Let G(i−1) be the balanced truncation of G(i), removing states corresponding to σt
i.

Then G(0) = Gr.

• Note that G(i) is also a balanced truncation of G.

• Applying the previous result at each stage gives

‖G − Gr‖ =
∥∥(

G(k) − G(k−1)
)

+
(
G(k−1) − G(k−2)

)
+ · · · + (

G(1) − G(0)
)∥∥

≤ ∥∥G(k) − G(k−1)
∥∥ + ‖G(k−1) − G(k−2)‖ + · · · + ‖G(1) − G(0)‖

≤ 2(σt
1 + · · · + σt

k)
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Balanced truncation

The induced-norm error between G and Gr satisfies

‖G − Gr‖ ≤ 2(σt
1 + · · · + σt

k)

Notes

• This formula is known as the twice-the-sum-of-the-tail formula.

• Applying it to the zero order truncation gives

‖G‖ ≤ 2(σ1 + · · · + σn) excluding multiplicities

• This is an upper bound on the error. In general, the balanced-truncation error may
be much less than this, but cannot be less than σr+1.

• This result was first proved by Dale Enns, in his 1984 Ph.D. thesis Model reduction
for control system design at Stanford. It was also independently proved by Keith
Glover in Cambridge in 1984.

• Since then, there have been many developments, including extensions for nonlinear
and uncertain systems, PDEs, time-varying systems, etc.



11 - 16 Balanced Truncation and Model Reduction 2001.11.07.01

Example

Ĝ(s) =
(s + 10)(s − 5)(s2 + 2s + 5)(s2 − 0.5s + 5)

(s + 4)(s2 + 4s + 8)(s2 + 0.2s + 100)(s2 + 5s + 2000)
,

Σ = diag(0.1793, 0.1789, 0.1077, 0.1076, 0.00076, 0.00008, 0.00003)

10
0

10
1

10
2

10
3

10
4

10
−4

10
−2

10
0

transfer function magnitude versus frequency

Original system
4th order balanced truncation

1 2 3 4 5 6 7
0

0.1

0.2

‖G − G4‖ = 0.0014

0.00076 = σ5 ≤ ‖G − G4‖ ≤ 2(σ5 + σ6 + σ7) = 0.0017
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Example

Ĝ(s) =
(s + 10)(s − 5)(s2 + 2s + 5)(s2 − 0.5s + 5)

(s + 4)(s2 + 4s + 8)(s2 + 0.2s + 100)(s2 + 5s + 2000)
,

Σ = diag(0.1793, 0.1789, 0.1077, 0.1076, 0.00076, 0.00008, 0.00003)

10
0

10
1

10
2

10
3

10
4

10
−4

10
−2

10
0

transfer function magnitude versus frequency

Original system
2nd order balanced truncation

‖G − G2‖ = 0.2153

0.1077 = σ3 ≤ ‖G − G2‖ ≤ 2(σ3 + σ4σ5 + σ6 + σ7) = 0.4322
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Balanced singular perturbation

Given state-space system

ẋ1(t) = A11x1(t) + A12x2(t) + B1u(t)

ẋ2(t) = A21x1(t) + A22x2(t) + B2u(t)

y(t) = C1x1(t) + C2x2(t) + Du(t)

The truncation method gives zero error as frequency tends to ∞. The error at zero-
frequency associated with state-space truncation is

Ĝ(0) − Ĝr(0) = CA−1B − C1A
−1
11 B1

An alternative is singular perturbation. Construct Ĥ(s) = Ĝ(s−1), and apply truncation
to construct Ĥr. Then let Ĝr(s) = Ĥr(s

−1). This gives zero error at zero frequency.
State-space formula are

Ĝr =

[
A11 − A12A

−1
22 A21 B1 − A12A

−1
22 B2

C1 − C2A
−1
22 A21 D − C2A

−1
22 B2

]

When combined with balancing, this is called balanced singular perturbation. The trans-
formation maps the left-half-plane to itself, so the error-bound holds.

In state-space, we can interpret this as setting ẋ2(t) = 0, and solving for x2(t).
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Example: Balanced singular perturbation

Ĝ(s) =
(s + 10)(s − 5)(s2 + 2s + 5)(s2 − 0.5s + 5)

(s + 4)(s2 + 4s + 8)(s2 + 0.2s + 100)(s2 + 5s + 2000)
,

10
0

10
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10
2

10
3

10
4

10
−4

10
−2

10
0

transfer function magnitude versus frequency

Original system
4th order balanced singular perturbation
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Optimal Hankel-norm approximation

Given ΓG, find an operator ΓGr : L2(−∞, 0] → L2[0,−∞) which solves

minimize ‖ΓG − ΓGr‖
subject to ΓGr is the Hankel operator for some Gr ∈ H∞

rank(ΓGr) = r

Notes

• Computational approach similar to balanced truncation.

• The optimal approximant achieves ‖ΓG − ΓGr‖ = σr+1.

• The Hankel-norm is independent of D. If σr > σr+1, one can choose D such that

‖G − Gr‖ ≤ σr+1 + . . . + σn excluding multiplicities

This is half that achieved by balanced truncation.

• For model reduction by 1-state, this is optimal; ‖G − Gr‖ ≤ σn.
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Generalized gramians

If X, Y ∈ R
n×n and X = XT and Y = Y T satisfy the LMIs

AX + XA∗ + BB∗ ≤ 0

A∗Y + Y A + C∗C ≤ 0

then X and Y are called generalized gramians.

Notes

• X ≥ Xc and Y ≥ Yo.

• Generalized gramians can be balanced; in this case the diagonal entries γk are called
generalized Hankel singular values.

• γi ≥ σi for i = 1, . . . , n.

• The generalized gramians can be used for balancing. If γr > γr+1, then the reduced-
order model is stable and satisfies

‖G − Gr‖ ≤ 2(γr+1 + . . . + γn) excluding multiplicities

• A useful advantage is that one can search for generalized gramians that increase
multiplicities.
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Optimal induced-norm model reduction

Suppose G has realization (A, B,C,D) and A ∈ R
n×n is Hurwitz. Then the following

are equivalent.

(a) There exists Gr with realization (Ar,Br, Cr, Dr) of order r such that ‖G − Gr‖ < γ.

(b) There exist X > 0 and Y > 0 satisfying

(i) AX + XA∗ + BB∗ < 0,

(ii) A∗Y + Y A + C∗C < 0,

(iii) λmin(XY ) = γ2, with rank(XY − γ2I) ≤ r.

Notes

• Once X and Y are known, construction is simple, via solving an LMI.

• Problem: the set of X and Y satisfying these constraints is not convex. All known
algorithms require computational time T > c1e

c2n for some c1, c2 > 0.

• General rank-constrained LMIs are known to be NP-complete.

• Good heuristics exist; e.g. minimize Trace(XY ).

• Much more is known; frequency weighted, gap metric, unstable systems, etc.


