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Engr210a Lecture 12: LFTs and stability

e 2-input 2-output framework

e Example problem formulations

e Linear fractional transformations
e \Well-posedness

e Realizability

e Internal stability

e Input-output characterization of internal stability
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2-input 2-output framework

z regulated outputs « < exogenous inputs w

Plant
y sensed outputs « <« actuator inputs u

Inputs

e Actuator inputs u are those inputs to the system that can be manipulated by the
controller.

e Exogenous inputs w are all other inputs.

Outputs

e Regulated outputs z are every output signal from the model.

e Sensed outputs are those outputs which are accessible to the controller.

Notes

e Objective is to write all specifications in terms of z and w.
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Command inputs and diagnostic outputs

Z system < < wsystem
System
ysystem T usystem
_ Controller _ _
command inputs —» —» diagnostic outputs
Formulate the above as
Plant
Zsystem < I wsystem
Zdiag < SyStem wcommands
ysystem = usystem
Controller
ycommands > udiag

2001.11.07.04
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Example: the regulator

U Moo Yo Moensor The plant P is given by
l l -Zl_ _P() 0 P()_ _wl_
K i’% £, LW =100 1| |ws
_y_ _P() 1 P()_ _u_

Suppose Fj is
Formulate the above as PP

x = Azr + Bq
Zl :yp< P nproc:wl /,n — Ca’:_|_Dq

Z, = U <

Substituting

Zo=U =W+ ws

7474 F, g

Z1 =T Y=7r-—+ws

leads to
[ A|B 0 B |
Y > K u p_ C\'D 0D
1010 0 [
C’D[D_
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Example: a tracking problem

2001.11.07.04

U nproc nsensor
A _
> » C
T > J
K > P,
P r=w,
Y—
Zl — € « M/err - i Wproc ~ nproc w2
Z2 - u < cht - i sens - nsensor - w3
) 4
1<« P «—(F
0 A
y K u
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Linear fractional transformations

Suppose P and K are state-space systems with

Al| By Bs
[Z] — [511 £12] [Z}] where P = Cl D11 D12
Y 21 1722 | O Day Doy |
and )
u= Ky where K:[C’ggf(]

The following interconnection is called the (lower) star-product of P and K, or the (lower)
linear-fractional transformation (LFT).

Z 4— <« W

A
IS

Y

The map from w to z is given by

S(P,K) = P + Py K(I — PpoK) ' Py
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Linear fractional transformations

The following interconnection is called the (lower) star-product of P and K, or the (lower)
linear-fractional transformation (LFT).

Z €4— <« W
P
Y < u
> K
Equivalently
Z—(1)« P11 < w
A
p, <~ K <‘G< B -
12 A 21
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Linear fractional transformations

Lower LFT Star Product
S(P,K) = P+ PiaK(I — PuK) ™' Py P « W
L 4—— <« W P
P
Y < U
Y u
K
g K Z, «— « W,
Upper LFT
- By S(P.K) =
S<P7 K) — P22 + P21Q<[ - Pll@) P12 §<P, Kll) P12<] :K11P22)—1K12'
Ko (I — P22K11)_1P21 S(K, Py)
Q
4 w
P
Y «<—— <« U
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General problem

A very general and useful way to formulate control problems is the following.

minimize |S(P, K)||

subject to The closed-loop is stable
Notes

e Many different norms can be used; the two most common are the H5 and H, norm.

e Robustness specifications can also be put into this form; we will see much more later.
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Well-posedness

The state-space equations are

$<t) = Ax(t) + BﬂU(t) + BQU(t) ij(t) = AKx(t) + BKy<t)
z(t) = Chz(t) + Dyyw(t) + Digu(t) u(t) = Crx(t) + Diy(t)
y(t) = CQ(]Z(t) + D21w<t) + ngu(t)

For linear operators or transfer functions, we have
S(P,K) = Py + PuK(I — PpK) 'Py

Caveat: invertibility here is as a transfer matrix, not as a bounded operator.

o] # [0 5 o] 0] w0

() ] +[Diy 0 [ u(t) ] + Dyyw(t)

In state-space this is

] = [0
|

S T e—

Z(t) = Cl O] "

L - [ 5 ) e

We need to solve these equations for u(t) and y(%).

2001.11.07.04
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Well-posedness

The LFT interconnection is called well-posed if unique solutions
exist for u and y, given Z< | « —w

e any initial conditions x(0) and zx(0), y )

e any smooth input function w,

> K
e any small perturbations to the state-space matrices for P
and K.
Theorem
The LFT interconnection is well-posed < I — Dos D is invertible.
Notes
. I —DK u(t) o 0 CK .”17(75) 0
e This follows from [_D22 7 ] [y(t)] = [02 O] [371((75) + Do, w(t)
~1
—Dr| | I+ DrgQDy» DgQ B 1
e Note that [_D22 7 ] = [ ODyy 0 where Q = (I — Dy D).

e In frequency domain: lim p22<jtd) = Dy and lim K(jw) = Dy

w—=00 w—=00
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Well-posedness
e The interconnection is well-posed iff I — Doy Dy is invertible.
e The interconnection is well-posed iff I — Dy Dos is invertible.

e In frequency domain, we have lim ng(jw) = Dy and lim IA((jw) = Dy

w—00 w—00

e If P and K are rational, then the LFT interconnection is well-posed if and only if
there exists w € R such that

dot(I = Poaljeo) K (juo)) # 0

o If Dy =0, that is if K is strictly proper, then the system is well-posed.

o If Dyy = 0, that is if ]522 is strictly proper, then the system is well-posed.
Notes
e \We require well-posedness so that the system equations make sense.

AN

e Physical systems are always well-posed; roughly, if Pis a physical system then P
must be strictly proper.

e Well-posedness says nothing about stability.



12-13 LFTs and stability 2001.11.07.04

Realizability
A general problem can be written as
minimize | H||
subject to  H = S(P, K) for some K € RP

The closed-loop is stable

Notes

e H=_S(P,K)= P+ PyK(I— PyK) 'Py. The map from K to H is nonlinear,

so we have a nonlinear function of & to minimize.

e Instead, focus on the set of possible H.

Alternative formulation
Let Hymi = {H € RP ; H = S(P, K) for some K € RP}.
minimize | H||
subject to H € H

The closed-loop is stable
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Theorem

Suppose P, is strictly proper. Then the set H, i, is affine.

Proof

o We know H = P + P12K<[ — PQQK)_1P21. Let R = <[ — PQQK)_l. This map is
one-to-one, since K = (I + RPy») 'R, and I + RPy is always invertible (in RP).
since P is strictly proper.

e So given K € RP we can construct R € RP, and vice-versa. Hence

Hoi = { Pi1 + PioRPy ; R € RP)}

e Suppose H,, Hy, € H,,b1. We need to show that for any A € R,
)\Ha + <1 — )\>Hb c 7_(rlzbl

Let R, and R} be such that H, = P;; + P2 R,Po1 and Hy, = Py + PpoRyPsy.
Choose Ry = AR, + (1 — A\)Ry. Then

ANH, + (1 — )\)Hb = P+ PppR)\Psy
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Realizability
Z < +<
A
P12
Z < +<
A

P11 -
K = 14 P21 <
P22
R
Pn <
R N P21 <

2001.11.07.04
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Realizability

The general optimization problem is
minimize | H||
subject to H € Hp,
The closed-loop is stable

The set H, b IS )
Huaol = { P11 + PiaRPs1 ; R € RP}

Equivalent problem
minimize | P11+ PioRPy |

subject to The closed-loop is stable

Notes

e H,.,b is convex, since it is affine.

e Optimization subject to the constraint that H € 'H,,, may be tractable.

e Once R has been found, construct K from K = (I + RPy) 'R.

2001.11.07.04
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Internal stability

Z € <« W
The system interconnection is called internally stable if, for P
every initial condition 2:(0) and zx(0), Y "
lim z(t) =0  and lim zx(t) =0
t—00 t—00 > K
when w = 0.

e We know

) = [0l Levio) = [0 Bl [ito) + [3] =
P R | RO PR

e The dynamics of the interconnected system are [ %] A [ %] where
Al AL 5T e

e Hence the system is internally stable if and only if 1 — Dy Dy is invertible and
Aq is Hurwitz.
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Internal stability

Suppose P € RP; that is P is a real-rational proper transfer function. Then
P is stable — P c H

Exponential stability of the state then follows if the state-space realization for P is con-
trollable and observable.

Linear Fractional Transformations

Z 44— <« W

Y < U

The map from w to z is given by
S(P,K) = Py + PoK(I — PpK) ' Py

s S(P, K) € Hy equivalent to exponential stability of the states when the realizations
of P and K are controllable and observable?

Answer: No. e.g pick Pjo = 0.
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Input-output characterization of internal stability

Consider the feedback loop:

d1 ()« K d2

v, < > ]322 v,

Inject actuator and sensor noise d; and dy. Then

B R IS U] Py O

e A state-space system is called stabilizable if for any initial condition x(0) in the
uncontrollable subspace, the state decays to zero.

e Similarly, a state-space system is called detectable if for any initial condition z(0) in
the unobservable subspace, the state decays to zero.

Suppose the realizations for /%y and K are stabilizable and detectable. Then the above
feedback loop is internally stable if and only if W € RH ..
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Input-output characterization of internal stability

d1 ()« K d2

(R » P, v,

Suppose the realizations for P» and K are stabilizable and detectable. Then the above
feedback loop is internally stable if and only if
(I-KG)™t (I-KG™'K
Gl — K&)' G(I — KG) K| € Tt
e For scalar Py and K, this is equivalent to the statement that there are no unstable
pole-zero cancellations.

e The above definition is valid in the multivariable case also, when zeros are not clearly

defined.

e Any sensible design problem would include signals d; and ds as part of w and signals
v1 and vy as part of z.
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Example: unstable pole-zero cancellations

Consider the plant-controller pair

Gils) = (Sl—(i IO§82 K(s) = —3(12+ 11s)

which has an unstable pole-zero cancellation.

Consider the tracking problem

T%T—» K > Pg > U

o 3(12 4 11s)
. - + 11s) .
But ] _
(10+s)s%  3(124+11s)(10+s)s?
W — (s+4)(s+3)2 (5—10)(s+4)(s+3)2

10— —3(12+115)
| (s+4)(s+3)2 (5+4)(s+3)2

and the pole-zero cancellation shows as instability of V.
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Internal stability and LFTs

Suppose P and K are state-space systems with

 A| B, B, |
[Z] — [iﬂ 512] [fl:j] where P = C1 D11 D12 and PQQ — [él DBQ ]
Yy 21 1722 _Cz Doy ng_ 2 | Y22
and ) ‘B
= K h K= | 22k
U Y where [CKDK]
Theorem
Suppose (A, Bs) is stabilizable and (A, C) is detectable. Then
d1—>®<— K d2 Z «— «— W
P
Y < U
<
V, < > P22 v, > K

is internally stable is internally stable



