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Engr210a Lecture 12: LFTs and stability

• 2-input 2-output framework

• Example problem formulations

• Linear fractional transformations

• Well-posedness

• Realizability

• Internal stability

• Input-output characterization of internal stability
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2-input 2-output framework

exogenous inputs wz regulated outputs

y sensed outputs actuator inputs u
Plant

Inputs

• Actuator inputs u are those inputs to the system that can be manipulated by the
controller.

• Exogenous inputs w are all other inputs.

Outputs

• Regulated outputs z are every output signal from the model.

• Sensed outputs are those outputs which are accessible to the controller.

Notes

• Objective is to write all specifications in terms of z and w.
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Command inputs and diagnostic outputs

wsystemzsystem

diagnostic outputscommand inputs

ysystem usystem

System

Controller

Formulate the above as

wsystem

wcommands

zsystem

zdiag

ysystem

ycommands

usystem

udiag

System

Plant

Controller



nproc nsensorypu

P
0

K + +

Formulate the above as

y u

P0

P

K

n wproc 1=

nsensor = w2

z1 = yp

z u2 =

++
r q

The plant P is given by
z1

z2

y


 =


P0 0 P0

0 0 1
P0 1 P0





w1

w2

u




Suppose P0 is

ẋ = Ax + Bq

r = Cx + Dq

Substituting

z2 = u q = w1 + w2

z1 = r y = r + w2

leads to

P =




A B 0 B
C D 0 D
0 0 0 I
C D I D
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Example: the regulator
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Example: a tracking problem
nproc nsensoru

r

e

P
0

K + +

−

y u

P0

P

WsensWact

WprocWerr

K

n wproc 2=

r w= 1

nsensor = w3

z1 = e

z u2 =

++

−
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Linear fractional transformations

Suppose P and K are state-space systems with

[
z
y

]
=

[
P11 P12

P21 P22

] [
w
u

]
where P̂ =


 A B1 B2

C1 D11 D12

C2 D21 D22




and

u = Ky where K̂ =

[
AK BK

CK DK

]

The following interconnection is called the (lower) star-product of P and K, or the (lower)
linear-fractional transformation (LFT).

wz

y u
P

K

The map from w to z is given by

S(P,K) = P11 + P12K(I − P22K)−1P21
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Linear fractional transformations

The following interconnection is called the (lower) star-product of P and K, or the (lower)
linear-fractional transformation (LFT).

wz

y u
P

K

Equivalently

w

uy

z P11

KP12

P22

P21
+

+



Lower LFT

S(P,K) = P11+P12K(I−P22K)−1P21

wz

y u
P

K

Upper LFT

S(P,K) = P22 + P21Q(I −P11Q)−1P12

wz

y u
P

Q

Star Product

w1

w2

z1

z2

y u

K

P

S(P, K) =[
S(P, K11) P12(I − K11P22)

−1K12

K21(I − P22K11)
−1P21 S(K, P22)

]
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Linear fractional transformations
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General problem

A very general and useful way to formulate control problems is the following.

minimize ‖S(P,K)‖
subject to The closed-loop is stable

Notes

• Many different norms can be used; the two most common are the H2 and H∞ norm.

• Robustness specifications can also be put into this form; we will see much more later.
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Well-posedness

The state-space equations are

ẋ(t) = Ax(t) + B1w(t) + B2u(t)

z(t) = C1x(t) + D11w(t) + D12u(t)

y(t) = C2x(t) + D21w(t) + D22u(t)

ẋK(t) = AKx(t) + BKy(t)

u(t) = CKx(t) + DKy(t)

For linear operators or transfer functions, we have

S(P,K) = P11 + P12K(I − P22K)−1P21

Caveat: invertibility here is as a transfer matrix, not as a bounded operator.

In state-space this is[
ẋ(t)
˙xK(t)

]
=

[
A 0
0 AK

] [
x(t)
xK(t)

]
+

[
B2 0
0 BK

] [
u(t)
y(t)

]
+

[
B1

0

]
w(t)

z(t) =
[
C1 0

] [
x(t)
xK(t)

]
+

[
D12 0

] [
u(t)
y(t)

]
+ D11w(t)

where [
I −DK

−D22 I

] [
u(t)
y(t)

]
=

[
0 CK

C2 0

] [
x(t)
xK(t)

]
+

[
0

D21

]
w(t)

We need to solve these equations for u(t) and y(t).



wz

y u
P

K
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Well-posedness

The LFT interconnection is called well-posed if unique solutions
exist for u and y, given

• any initial conditions x(0) and xK(0),

• any smooth input function w,

• any small perturbations to the state-space matrices for P
and K.

Theorem

The LFT interconnection is well-posed ⇐⇒ I − D22DK is invertible.

Notes

• This follows from

[
I −DK

−D22 I

] [
u(t)
y(t)

]
=

[
0 CK

C2 0

] [
x(t)
xK(t)

]
+

[
0

D21

]
w(t)

• Note that

[
I −DK

−D22 I

]−1

=

[
I + DKQD22 DKQ

QD22 Q

]
where Q = (I −D22DK)−1.

• In frequency domain: lim
w→∞

P̂22(jω) = D22 and lim
w→∞

K̂(jω) = DK
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Well-posedness

• The interconnection is well-posed iff I − D22DK is invertible.

• The interconnection is well-posed iff I − DKD22 is invertible.

• In frequency domain, we have lim
w→∞

P̂22(jω) = D22 and lim
w→∞

K̂(jω) = DK.

• If P and K are rational, then the LFT interconnection is well-posed if and only if
there exists w ∈ R such that

det
(
I − P̂22(jω)K̂(jω)

) �= 0

• If DK = 0, that is if K̂ is strictly proper, then the system is well-posed.

• If D22 = 0, that is if P̂22 is strictly proper, then the system is well-posed.

Notes

• We require well-posedness so that the system equations make sense.

• Physical systems are always well-posed; roughly, if P̂ is a physical system then P̂
must be strictly proper.

• Well-posedness says nothing about stability.
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Realizability

A general problem can be written as

minimize ‖H‖
subject to H = S(P,K) for some K̂ ∈ RP

The closed-loop is stable

Notes

• H = S(P,K) = P11 + P12K(I −P22K)−1P21. The map from K to H is nonlinear,
so we have a nonlinear function of K to minimize.

• Instead, focus on the set of possible H.

Alternative formulation

Let Hrlzbl = {Ĥ ∈ RP ; H = S(P,K) for some K̂ ∈ RP}.
minimize ‖H‖

subject to H ∈ Hrlzbl

The closed-loop is stable
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Theorem

Suppose P22 is strictly proper. Then the set Hrlzbl is affine.

Proof

• We know H = P11 + P12K(I − P22K)−1P21. Let R = (I − P22K)−1. This map is
one-to-one, since K = (I + RP22)

−1R, and I + RP22 is always invertible (in RP ).
since P22 is strictly proper.

• So given K̂ ∈ RP we can construct R̂ ∈ RP , and vice-versa. Hence

Hrlzbl =
{
P11 + P12RP21 ; R̂ ∈ RP

}
• Suppose Ha,Hb ∈ Hrlzbl. We need to show that for any λ ∈ R,

λHa + (1 − λ)Hb ∈ Hrlzbl

Let Ra and Rb be such that Ha = P11 + P12RaP21 and Hb = P11 + P12RbP21.
Choose Rλ = λRa + (1 − λ)Rb. Then

λHa + (1 − λ)Hb = P11 + P12RλP21
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Realizability

w

uy

z P11

K

R

P12

P22

P21
+

+

wz P11

RP12 P21

+
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Realizability

The general optimization problem is

minimize ‖H‖
subject to H ∈ Hrlzbl

The closed-loop is stable

The set Hrlzbl is
Hrlzbl =

{
P11 + P12RP21 ; R̂ ∈ RP

}
Equivalent problem

minimize ‖P11 + P12RP21‖
subject to The closed-loop is stable

Notes

• Hrlzbl is convex, since it is affine.

• Optimization subject to the constraint that H ∈ Hrlzbl may be tractable.

• Once R has been found, construct K from K = (I + RP22)
−1R.



wz

y u
P

K

12 - 17 LFTs and stability 2001.11.07.04

Internal stability

The system interconnection is called internally stable if, for
every initial condition x(0) and xK(0),

lim
t→∞x(t) = 0 and lim

t→∞xK(t) = 0

when w = 0.

• We know [
ẋ(t)
˙xK(t)

]
=

[
A 0
0 AK

] [
x(t)
xK(t)

]
+

[
B2 0
0 BK

] [
u(t)
y(t)

]
+

[
B1

0

]
w(t)

[
I −DK

−D22 I

] [
u(t)
y(t)

]
=

[
0 CK

C2 0

] [
x(t)
xK(t)

]
+

[
0

D21

]
w(t)

• The dynamics of the interconnected system are

[
ẋ(t)
ẋK(t)

]
= Acl

[
x(t)
xK(t)

]
where

Acl =

[
A 0
0 AK

]
+

[
B2 0
0 BK

] [
I −DK

−D22 I

]−1 [
0 CK

C2 0

]

• Hence the system is internally stable if and only if I − D22DK is invertible and
Acl is Hurwitz.
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Internal stability

Suppose P̂ ∈ RP ; that is P̂ is a real-rational proper transfer function. Then

P is stable ⇐⇒ P̂ ∈ H∞

Exponential stability of the state then follows if the state-space realization for P is con-
trollable and observable.

Linear Fractional Transformations

wz

y u
P

K

The map from w to z is given by

S(P,K) = P11 + P12K(I − P22K)−1P21

Is S(P̂ , K̂) ∈ H∞ equivalent to exponential stability of the states when the realizations
of P and K are controllable and observable?

Answer: No. e.g pick P12 = 0.



12 - 19 LFTs and stability 2001.11.07.04

Input-output characterization of internal stability

Consider the feedback loop:

d2d1

v1 v2

K

P22

++

Inject actuator and sensor noise d1 and d2. Then[
v1

v2

]
= W

[
d1

d2

]
where W =

[
(I − KG)−1 (I − KG)−1K

G(I − KG)−1 G(I − KG)−1K

]

• A state-space system is called stabilizable if for any initial condition x(0) in the
uncontrollable subspace, the state decays to zero.

• Similarly, a state-space system is called detectable if for any initial condition x(0) in
the unobservable subspace, the state decays to zero.

Suppose the realizations for P22 and K are stabilizable and detectable. Then the above
feedback loop is internally stable if and only if Ŵ ∈ RH∞.
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Input-output characterization of internal stability

d2d1

v1 v2

K

P22

++

Suppose the realizations for P22 and K are stabilizable and detectable. Then the above
feedback loop is internally stable if and only if[

(I − KG)−1 (I − KG)−1K
G(I − KG)−1 G(I − KG)−1K

]
∈ RH∞

• For scalar P22 and K, this is equivalent to the statement that there are no unstable
pole-zero cancellations.

• The above definition is valid in the multivariable case also, when zeros are not clearly
defined.

• Any sensible design problem would include signals d1 and d2 as part of w and signals
v1 and v2 as part of z.
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Example: unstable pole-zero cancellations

Consider the plant-controller pair

Ĝ(s) =
10 − s

(s + 10)s2
K̂(s) =

−3(12 + 11s)

10 − s

which has an unstable pole-zero cancellation.

Consider the tracking problem

yr P
0

K+

Then

ŷ(s) =
−3(12 + 11s)

(s + 4)(s + 3)2
r̂(s)

But

W =




(10+s)s2

(s+4)(s+3)2
3(12+11s)(10+s)s2

(s−10)(s+4)(s+3)2

10−s
(s+4)(s+3)2

−3(12+11s)
(s+4)(s+3)2




and the pole-zero cancellation shows as instability of W .
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Internal stability and LFTs

Suppose P and K are state-space systems with

[
z
y

]
=

[
P11 P12

P21 P22

] [
w
u

]
where P̂ =


 A B1 B2

C1 D11 D12

C2 D21 D22


 and P̂22 =

[
A B2

C2 D22

]

and

u = Ky where K̂ =

[
AK BK

CK DK

]

Theorem

Suppose (A, B2) is stabilizable and (A, C2) is detectable. Then

d2d1

v1 v2

K

P22

++ wz

y u
P

K

⇐⇒

is internally stable is internally stable


