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Engr210a Lecture 13: Internal stability and coprime factorization

• Internal stability

• Stabilizing controllers

• Achievable closed-loop maps

• Interpolation

• Parametrization of stabilizing controllers

• Division and coprimeness

• Euclid’s algorithm

• The Bezout equation

• Coprime factorization in H∞.
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Alternative characterization of internal stability
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Z =

[
I −K

−P22 I

]−1

=

[
(I − KP22)

−1 K(I − P22K)−1

(I − P22K)−1P22 (I − P22K)−1

]

Suppose the realizations for P22 and K are stabilizable and detectable. Then

Z ∈ H∞ ⇐⇒ the interconnection is internally stable
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Stabilizing controllers

Controller K is called stabilizing if the interconnection of P22 and K is internally stable.

Characterizations

Assume the realizations for P22 and K are stabilizable and detectable. Then

• K is stabilizing if and only if[
I −K

−P22 I

]−1

=

[
(I − KP22)

−1 K(I − P22K)−1

(I − P22K)−1P22 (I − P22K)−1

]
is stable

• Special case: if K is stable, then

K is stabilizing ⇐⇒ (I − P22K)−1P22 is stable

Proof: Note that[
I −K

−P22 I

]−1

=

[
I + K(I − P22K)−1P22 K

(
I + (I − P22K)−1P22

)
(I − P22K)−1P22 I + (I − P22K)−1P22K

]

• Another special case: if P is stable, then

K is stabilizing ⇐⇒ K(I − P22K)−1 is stable
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Stable interconnections

Recall the set of realizable maps H : w → z is

Hrlzbl = {Ĥ ∈ RP ; H = S(P,K) for some K̂ ∈ RP}
= {P11 + P12RP21 ; R̂ ∈ RP}

Define the set

Hstable =

{
Ĥ ∈ RP ; H = S(P,K) for some K̂ ∈ RP

the interconnection is internally stable

}

the set of closed-loop maps achievable by stabilizing controllers.

Theorem

Suppose P22 is proper. Then Hstable is affine.
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Theorem

Suppose P22 is proper. Then Hstable is affine.

Proof

• H ∈ Hstable if and only if H = P11 + P12RP21, and

Z =

[
I −K

−P22 I

]−1

=

[
(I − KP22)

−1 K(I − P22K)−1

(I − P22K)−1P22 (I − P22K)−1

]
is stable

Substituting R = K(I − P22K)−1 gives

Z =

[
I + RP22 R

(I + P22R)P22 I + P22R

]

Then K = (I + RP22)
−1R is stabilizing if and only if Z is stable.

• The map from R to Z is affine, and therefore the preimage of H∞ under this map is
an affine set in L∞.

• Hence the set of R such that K = (I + RP22)
−1R is stabilizing is an affine set.

• The map from R to H is affine, and the image of an affine set under an affine map
is affine.
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Interpolation conditions

We have

K = (I + RP22)
−1R is stabilizing ⇐⇒ Z =

[
I + RP22 R

(I + P22R)P22 I + P22R

]
is stable

For scalar plant and controller P̂22 and K̂22, let T = RP22. Then

K = (I + T )−1TP−1
22 is stabilizing ⇐⇒ Z =

[
I + T TG−1

(I + T )P22 I + T

]
is stable

Let z1, . . . , zk be the unstable zeros and p1, . . . , pm be the unstable poles of P22. Assume
they are distinct. Then

K = (I+T )−1TP−1
22 is stabilizing ⇐⇒ T̂ ∈ H∞

T̂ (pi) = −1 for i = 1, . . . , m

T̂ (zi) = 0 for i = 1, . . . , k

relative degree of T ≥ relative degree of P22.

Then the closed loop map is S(P,K) = P11 +
P12TP21

P22

Note that the maximum modulus principle then implies that ‖Z11‖ ≥ 1 and ‖Z22‖ ≥ 1 if
P22 has RHP zeroes; hence weights are essential.
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Optimization and interpolation

The general problem is

minimize ‖H‖
subject to H = S(P,K) for some K̂ ∈ RP

The closed-loop is stable

Equivalent formulation for scalar P22

Let z1, . . . , zk be the unstable zeros and p1, . . . , pm be the unstable poles of P22. Assume
they are distinct.

minimize ‖P11 + P12TP−1
22 P21‖

subject to T ∈ H1×1
∞

T̂ (pi) = −1 for i = 1, . . . ,m

T̂ (zi) = 0 for i = 1, . . . , k

relative degree of T ≥ relative degree of P22.

This is an example of a Nevanlinna-Pick interpolation problem. In general, these problems
are hard to solve (but it can be done).
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Stabilizing controllers for stable plants

Suppose P is stable. Then

K is stabilizing ⇐⇒ K = (I + RP22)
−1R for some stable R

Then
Hstable =

{
P11 + P12RP21 ; R̂ ∈ H∞

}
Proof

Z is stable if and only if R is stable, since

Z =

[
I + RP22 R

(I + P22R)P22 I + P22R

]

Notes

• If P is stable, then the above gives a simple parametrization of all stabilizing con-
trollers.

• What about when P is unstable? We need the notion of coprime factorization.
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Optimization for stable P

The general problem is

minimize ‖H‖
subject to H = S(P,K) for some K̂ ∈ RP

The closed-loop is stable

Equivalent formulation for stable P

minimize ‖P11 + P12RP21‖
subject to R ∈ H∞

Once the optimal R is found, then the optimal K is given by

K = (I + RP22)
−1R
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Coprimeness

Suppose n, d ∈ Z are integers. Then

d divides n if there exists q ∈ Z such that n = dq

The integer d is called the greatest common divisor (gcd) of n,m ∈ Z if

• d divides n and d divides m.

• Every integer a that divides both n and m also divides d.

n and m are called coprime if their gcd is 1.

Examples

• 10 and 21 are coprime.

• 12 and 21 are not coprime. Their gcd is 3.
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Division

Given n,m ∈ Z, and n ≤ m. Then there exists a unique q ∈ Z and r ∈ Z with r < n
such that

m = nq + r

q is the quotient, r is the remainder.

Euclid’s algorithm

Euclid’s algorithm gives a way to find the gcd of n,m ∈ Z.

a0 = m; b0 = n; k = 1;

Repeat {
Find q and r so that ak = qbk + r;
ak = bk−1; bk = r
k = k + 1;
} until r = 0.

The gcd is then ak−1.

ak bk

57 12
12 9
9 3
3 0
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Polynomials

Let R[s] be the set of polynomials in the variable s.

Suppose n, d ∈ R[s] are polynomials. Then

d divides n if there exists q ∈ R[s] such that n = dq

The polynomial d is called a greatest common divisor (gcd) of n,m ∈ R[s] if

• d divides n and d divides m.

• Every a ∈ R[s] that divides both n and m also divides d.

n and m are called coprime if their gcd is a scalar.

Examples

• (x − 1)(x − 2) and (x − 3) are coprime.

• (x− 1)(x2 + 2) and (x− 1) are not coprime. A gcd is any scalar multiple of (x− 1).
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Polynomials

Given two polynomials n(s) and m(s), we can apply Euclid’s algorithm to find their gcd.

Euclid’s algorithm

Euclid’s algorithm gives a way to find the gcd of n,m ∈ R[s].

a0 = m; b0 = n; k = 1;

Repeat {
Find q and r so that ak = qbk + r;
ak = bk−1; bk = r
k = k + 1;
} until r = 0.

A gcd is then ak−1.

ak bk

s4 + 5 s3 + 6 s2 + 3 s + 1 s4 + 3 s3 + s + 2 s2 + 1
s4 + 3 s3 + s + 2 s2 + 1 2 s3 + 4 s2 + 2 s

2 s3 + 4 s2 + 2 s −s2 + 1
−s2 + 1 4 s + 4
4 s + 4 0
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Euclid’s algorithm (∼ 300 B.C.)

ak−1 is the gcd of n and m.

Proof

• We have a0 = m, a1 = n, and ak = 0, where

ai−2 = qiai−1 + ai for i = 2, . . . , k

• We know ak−1 divides ak−2, and the above equation implies that if ai divides ai−1

then ai divides ai−2. Hence by induction, ak−1 divides a0 and a1; that is, ak−1 divides
m and n.

• Also, ai = ai−2 − qiai−1 implies that

ai = xai−2 + yai−1 for some x, y ∈ Z.

for i = 2, . . . , k − 1. That is, ai is a linear combination of ai−2 and ai−1 where the
coefficients are integers. By induction again, we have

ak−1 = xa0 + ya1

ak−1 = xm + yn for some x, y ∈ Z.

hence any divisor of m and n is also a divisor of ak−1. Hence ak−1 is a gcd.
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The Bezout equation

The integers m, n ∈ Z are coprime if and only if there exists x, y ∈ Z such that

xm + yn = 1

This equation is called the Bezout equation.

Proof

The proof follows immediately from the above proof for Euclid’s algorithm.

Notes

• Euclid’s algorithm works for

• The integers Z.

• Polynomials R[s].

• Scalar, stable, proper rational functions in RH∞.

• Matrix-valued stable, proper rational functions in RH∞.

• The general algebraic structure for which this works is called a ring.

• The if direction is easy; e.g. for polynomials, if m and n have a common zero, then
their cannot exist a solution to the Bezout equation.
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Scalar stable proper transfer functions

Suppose m, n ∈ RH1×1
∞ . Then

d divides n if there exists q ∈ RH1×1
∞ such that n = dq

Notes

• d divides n if and only if
n

d
∈ RH1×1

∞

Examples

• f1(s) =
s + 1

(s + 2)2
f2(s) =

s − 1

s + 1
f3(s) =

s − 1

(s + 1)2

g1(s) =
s − 1

s + 4
g2(s) =

1

3
g3(s) =

s − 1

(s + 2)2

• f1 divides g2 and g3, but not g1.

• f2 divides g1 and g3, but not g2.

• f3 divides g3, but not g1 or g2.
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Scalar stable proper transfer functions

d ∈ RH1×1
∞ is called a greatest common divisor (gcd) of n, m ∈ RH1×1

∞ if

• d divides n and d divides m.

• Every a ∈ RH1×1
∞ that divides both n and m also divides d.

n and m are called coprime if d and d−1 are stable and proper for all gcds d.

Notes

• n and m are coprime if and only if they have no common zeros in the right-half-plane,
or at infinity.

Examples

• n =
s

(s + 1)2
and m =

s − 1

s + 1
are coprime. xm + yn = 1 is satisfied for

x =
(2 s + 4) (s + 1)2

s3 + 3/2 s2 + 3 s + 1/2
and y =

(s − 1/2) (s + 1)2

s3 + 3/2 s2 + 3 s + 1/2

• s − 1

(s + 3)2
and

s − 2

(s + 3)2
are not coprime.



13 - 18 Internal stability and coprime factorization S. Lall, Stanford. 2001.11.12.01

Coprime factorization

Rational numbers

Given p ∈ Q, find n,m ∈ Z such that

p =
n

m
and n,m are coprime

Rational functions; factorization over R[s]

Given p ∈ RP 1×1 find n,m ∈ R[s] such that

p =
n

m
and n,m are coprime

n,m always exist; just cancel any common zeros.

Rational functions; factorization over RH1×1
∞

Given p ∈ RP 1×1 find n,m ∈ RH1×1
∞ such that

p =
n

m
and n,m are coprime

In contrast to above: n,m must be stable proper transfer functions.
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Coprime factorization over RH1×1
∞

Given p ∈ RP 1×1 find n,m ∈ RH1×1
∞ such that

p =
n

m
and n,m are coprime

Notes

• n,m must be stable proper transfer functions.

• A coprime factorization always exists; make all stable poles of p poles of n, all stable
zeros of p poles of m, and add zeros to n and m as necessary.

Example

Suppose p̂ is

p̂(s) =
(s − 1)(s + 2)

(s − 3)(s + 4)

A coprime-factorization is

n̂(s) =
s − 1

s + 4
m̂(s) =

s − 3

s + 2
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Coprime transfer functions in RH∞.

Suppose M, N ∈ RH∞, and let D ∈ RH∞ be square. Then

D right-divides N if there exists Q ∈ RH∞ such that N = QD

The square D ∈ RH∞ us called a right greatest common divisor of M, N if

• D right-divides N and D right-divides M .

• Every A ∈ RH1×1
∞ that right-divides both N and M also right-divides D.

N and M are called right-coprime if D and D−1 are stable and proper for all gcds D.

The Bezout equation

M,N ∈ RH∞ are right-coprime if and only if there exists X, Y ∈ RH∞ such that

XM + Y N = I



Right-coprime factorization

Given P ∈ RP , a factorization such that

• P = NM−1

• N,M ∈ RH∞

• N and M are right-coprime

is called a right-coprime factorization of P .

Left-coprime factorization

Given P ∈ RH∞, a factorization such that

• P = M̃−1Ñ

• Ñ , M̃ ∈ RH∞

• Ñ and M̃ are left-coprime

is called a left-coprime factorization of P .

Notes

• Left and right coprime factoriza-
tions always exist.

Example

Suppose P is

P̂ (s) =
s

(s + 1)(s − 1)

A coprime-factorization is

N(s) =
s

(s + 1)2
M(s) =

s − 1

s + 1
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Coprime factorization in RH∞.
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Stabilization via coprime factorization

Scalar example

Suppose p̂22 ∈ RH1×1
∞ . Let

p̂22(s) =
n̂(s)

m̂(s)

be a coprime factorization, and x̂, ŷ ∈ RH1×1
∞ satisfy the Bezout equation

x̂(s)m̂(s) − ŷ(s)n̂(s) = 1

Theorem

k̂(s) =
ŷ(s)

x̂(s)
is a stabilizing controller.

Proof

Ẑ =

[
I −k̂

−p̂22 I

]−1

=
1

1 − k̂p̂22

[
1 k̂

p̂22 1

]

=
1

x̂m̂ − ŷn̂

[
x̂m̂ ŷm̂
x̂n̂ x̂m̂

]
=

[
x̂m̂ ŷm̂
x̂n̂ x̂m̂

]
which is stable.
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Every stabilizing controller

Suppose p̂22 ∈ RH1×1
∞ . Let p̂22(s) = n̂(s)m̂−1(s) be a coprime factorization, and x̂, ŷ ∈

RH1×1
∞ satisfy the Bezout equation x̂(s)m̂(s) − ŷ(s)n̂(s) = 1.

Theorem

Every stabilizing controller has the form

k̂ =
ŷ − m̂q̂

x̂ − n̂q̂

for some q ∈ RH1×1
∞ .

Proof

The proof that k̂ is stabilizing is the same as before, since

(x̂ − n̂q̂)m̂ − (ŷ − m̂q̂) = 1

Then

Ẑ =

[
(x̂ − n̂q̂)m̂ (ŷ − m̂q̂)m̂
(x̂ − n̂q̂)n̂ (x̂ − n̂q̂)m̂

]
which is stable.

We will prove that every k̂ has this form in the matrix case.


