Engr210a Lecture 13: Internal stability and coprime factorization

- Internal stability
- Stabilizing controllers
- Achievable closed-loop maps
- Interpolation
- Parametrization of stabilizing controllers
- \bullet Division and coprimeness
- Euclid's algorithm
- \bullet The Bezout equation
- Coprime factorization in *H*[∞].

Alternative characterization of internal stability

This interconnection is equivalent to

$$
\begin{bmatrix} I & -K \ -P_{22} & I \end{bmatrix} \begin{bmatrix} r_1 \ r_2 \end{bmatrix} = \begin{bmatrix} f_1 \ f_2 \end{bmatrix}
$$

Let

$$
Z = \begin{bmatrix} I & -K \\ -P_{22} & I \end{bmatrix}^{-1} = \begin{bmatrix} (I - KP_{22})^{-1} & K(I - P_{22}K)^{-1} \\ (I - P_{22}K)^{-1}P_{22} & (I - P_{22}K)^{-1} \end{bmatrix}
$$

Suppose the realizations for P_{22} and K are stabilizable and detectable. Then $Z \in H_{\infty}$ \iff the interconnection is internally stable

Stabilizing controllers

Controller *K* is called *stabilizing* if the interconnection of P_{22} and *K* is internally stable.

Characterizations

Assume the realizations for P_{22} and K are stabilizable and detectable. Then

 \bullet $\ K$ is stabilizing if and only if

$$
\begin{bmatrix} I & -K \\ -P_{22} & I \end{bmatrix}^{-1} = \begin{bmatrix} (I - KP_{22})^{-1} & K(I - P_{22}K)^{-1} \\ (I - P_{22}K)^{-1}P_{22} & (I - P_{22}K)^{-1} \end{bmatrix}
$$
 is stable

 $\bullet\,$ Special case: if K is stable, then

K is stabilizing \iff $(I - P_{22}K)^{-1}P_{22}$ is stable

Proof: Note that

$$
\begin{bmatrix} I & -K \ -P_{22} & I \end{bmatrix}^{-1} = \begin{bmatrix} I + K(I - P_{22}K)^{-1}P_{22} & K(I + (I - P_{22}K)^{-1}P_{22}) \ (I - P_{22}K)^{-1}P_{22} & I + (I - P_{22}K)^{-1}P_{22}K \end{bmatrix}
$$

 \bullet Another special case: if P is stable, then

K is stabilizing \iff $K(I - P_{22}K)^{-1}$ is stable

Stable interconnections

Recall the set of realizable maps $H: w \rightarrow z$ is

$$
\mathcal{H}_{\text{rlzbl}} = \{ \hat{H} \in RP \; ; \; H = \underline{S}(P, K) \text{ for some } \hat{K} \in RP \}
$$

$$
= \{ P_{11} + P_{12}RP_{21} \; ; \; \hat{R} \in RP \}
$$

Define the set

$$
\mathcal{H}_{\text{stable}} = \left\{ \begin{array}{c} \hat{H} \in RP \; ; \; H = \underline{S}(P, K) \; \text{for some} \; \hat{K} \in RP \\ \text{the interconnection is internally stable} \end{array} \right\}
$$

the set of closed-loop maps achievable by stabilizing controllers.

Theorem

Suppose P_{22} is proper. Then \mathcal{H}_{stable} is affine.

Theorem

Suppose P_{22} is proper. Then \mathcal{H}_{stable} is affine.

Proof

•
$$
H \in \mathcal{H}_{stable}
$$
 if and only if $H = P_{11} + P_{12}RP_{21}$, and

$$
Z = \begin{bmatrix} I & -K \\ -P_{22} & I \end{bmatrix}^{-1} = \begin{bmatrix} (I - KP_{22})^{-1} & K(I - P_{22}K)^{-1} \\ (I - P_{22}K)^{-1}P_{22} & (I - P_{22}K)^{-1} \end{bmatrix}
$$
 is stable

Substituting $R = K(I - P_{22}K)^{-1}$ gives

$$
Z = \begin{bmatrix} I + RP_{22} & R \\ (I + P_{22}R)P_{22} & I + P_{22}R \end{bmatrix}
$$

Then $K = (I + RP_{22})^{-1}R$ is stabilizing if and only if Z is stable.

- The map from *R* to *Z* is affine, and therefore the preimage of *H*[∞] under this map is an affine set in *L*[∞].
- \bullet Hence the set of R such that $K=(I+RP_{22})^{-1}R$ is stabilizing is an affine set.
- \bullet The map from *R* to *H* is affine, and the image of an affine set under an affine map is affine.

Interpolation conditions

We have

$$
K=(I+RP_{22})^{-1}R\text{ is stabilizing }\quad\Longleftrightarrow\quad Z=\begin{bmatrix}I+RP_{22}&R\\(I+P_{22}R)P_{22}&I+P_{22}R\end{bmatrix}\text{is stable}
$$

For scalar plant and controller $\hat{P_2}$ \hat{P}_{22} and \hat{K}_{1} K_{22} , let $T = RP_{22}$. Then

$$
K = (I+T)^{-1}TP_{22}^{-1} \text{ is stabilizing } \iff Z = \begin{bmatrix} I+T & T G^{-1} \\ (I+T)P_{22} & I+T \end{bmatrix} \text{ is stable}
$$

Let z_1, \ldots, z_k be the unstable zeros and p_1, \ldots, p_m be the unstable poles of P_{22} . Assume they are distinct. Then

 $K = (I+T)^{-1}TP_{22}^{-1}$ is stabilizing \Leftrightarrow $\hat{T} \in H_{\infty}$ \hat{T} $(p_i) = -1$ for $i=1,\ldots,m$ \hat{T} $(z_i)=0$ for $i=1,\ldots,k$

relative degree of $T \geq$ relative degree of P_{22} .

Then the closed loop map is $\underline{S}(P,K) = P_{11} + \frac{P_{12}TP_{21}}{P_{22}}$

Note that the maximum modulus principle then implies that $||Z_{11}|| \geq 1$ and $||Z_{22}|| \geq 1$ if *P*²² has RHP zeroes; hence weights are essential.

Optimization and interpolation

The general problem is

minimize $||H||$ subject to $H = \underline{S}(P,K)$ for some \hat{K} ∈ *RP* The closed-loop is stable

Equivalent formulation for scalar P_{22}

Let z_1, \ldots, z_k be the unstable zeros and p_1, \ldots, p_m be the unstable poles of P_{22} . Assume they are distinct.

minimize
$$
||P_{11} + P_{12}TP_{22}^{-1}P_{21}||
$$

\nsubject to $T \in H_{\infty}^{1 \times 1}$
\n $\hat{T}(p_i) = -1$ for $i = 1, ..., m$
\n $\hat{T}(z_i) = 0$ for $i = 1, ..., k$
\nrelative degree of $T \ge$ relative degree of P_{22} .

This is an example of ^a *Nevanlinna-Pick* interpolation problem. In general, these problems are hard to solve (but it can be done).

Stabilizing controllers for stable plants

Suppose *P* is stable. Then

K is stabilizing \iff $K = (I + RP_{22})^{-1}R$ for some stable *R*

Then

$$
\mathcal{H}_{\text{stable}} = \left\{ P_{11} + P_{12}RP_{21} \; ; \; \hat{R} \in H_{\infty} \right\}
$$

Proof

Z is stable if and only if *R* is stable, since

$$
Z = \begin{bmatrix} I + RP_{22} & R \\ (I + P_{22}R)P_{22} & I + P_{22}R \end{bmatrix}
$$

Notes

- $\bullet\,$ If P is stable, then the above gives a simple parametrization of all stabilizing controllers.
- What about when *P* is unstable? We need the notion of *coprime factorization*.

13 - 9 Internal stability and coprime factorization S. Lall, Stanford. 2001.11.12.01

Optimization for stable *P*

The general problem is

minimize $||H||$ subject to $H = \underline{S}(P,K)$ for some \hat{K} ∈ *RP* The closed-loop is stable

Equivalent formulation for stable *P*

Once the optimal *R* is found, then the optimal *K* is given by

 $K = (I + RP_{22})^{-1}R$

Coprimeness

Suppose $n, d \in \mathbb{Z}$ are integers. Then

d divides *n* if there exists $q \in \mathbb{Z}$ such that $n = dq$

The integer *d* is called the *greatest common divisor* (gcd) of $n, m \in \mathbb{Z}$ if

- *d* divides *ⁿ* and *d* divides *^m*.
- Every integer *^a* that divides both *ⁿ* and *^m* also divides *d*.

ⁿ and *^m* are called *coprime* if their gcd is 1.

Examples

- \bullet 10 and 21 are coprime.
- \bullet $\,$ 12 and 21 are not coprime. Their gcd is $3.$

Division

Given $n,m \in \mathbb{Z}$, and $n \leq m$. Then there exists a unique $q \in \mathbb{Z}$ and $r \in \mathbb{Z}$ with $r < n$ such that

$$
m=nq+r
$$

q is the quotient, *^r* is the remainder.

Euclid's algorithm

Euclid's algorithm gives a way to find the gcd of $n, m \in \mathbb{Z}$.

$a_0 = m$	$b_0 = n$	$k = 1$
$a_0 = m$	$b_0 = n$	$k = 1$
$57 \ 12$		
$12 \ 9$		
$12 \ 9$		
$a_k = b_{k-1}$	$b_k = r$	
$k = k + 1$		
$k = k + 1$		
$k = k + 1$		

The gcd is then *ak*−1.

Polynomials

Let ^R[*s*] be the set of polynomials in the variable *^s*. Suppose $n, d \in \mathbb{R}[s]$ are polynomials. Then

```
d divides n if there exists q \in \mathbb{R}[s] such that n = dq
```
The polynomial d is called a *greatest common divisor* (gcd) of $n,m \in \mathbb{R}[s]$ if

- *d* divides *ⁿ* and *d* divides *^m*.
- Every *^a* [∈] ^R[*s*] that divides both *ⁿ* and *^m* also divides *d*.

ⁿ and *^m* are called *coprime* if their gcd is ^a scalar.

Examples

- $(x-1)(x-2)$ and $(x-3)$ are coprime.
- $(x-1)(x^2+2)$ and $(x-1)$ are not coprime. A gcd is any scalar multiple of $(x-1)$.

Polynomials

Given two polynomials *ⁿ*(*s*) and *^m*(*s*), we can apply Euclid's algorithm to find their gcd.

Euclid's algorithm

Euclid's algorithm gives a way to find the gcd of $n, m \in \mathbb{R}[s]$.

$$
a_0 = m; \quad b_0 = n; \quad k = 1;
$$

Repeat {
Find q and r so that $a_k = qb_k + r$;

$$
a_k = b_{k-1}; \quad b_k = r
$$

$$
k = k + 1;
$$

} until $r = 0$.

A gcd is then *ak*−1.

Euclid's algorithm $({\sim} 300 \text{ B.C.})$

ak−¹ is the gcd of *ⁿ* and *^m*.

Proof

 $\bullet\,$ We have $a_0=m,\ a_1=n,$ and $a_k=0,$ where

$$
a_{i-2} = q_i a_{i-1} + a_i
$$
 for $i = 2, ..., k$

- We know *ak*−¹ divides *ak*−2, and the above equation implies that if *ai* divides *ai*−¹ then a_i divides a_{i-2} . Hence by induction, a_{k-1} divides a_0 and a_1 ; that is, a_{k-1} divides m and n .
- Also, *ai* ⁼ *ai*−² [−] *qiai*−¹ implies that

 $a_i = xa_{i-2} + ya_{i-1}$ for some $x, y \in \mathbb{Z}$.

for $i = 2, \ldots, k - 1$. That is, a_i is a linear combination of a_{i-2} and a_{i-1} where the coefficients are integers. By induction again, we have

$$
a_{k-1} = xa_0 + ya_1
$$

\n
$$
a_{k-1} = xm + yn \qquad \text{for some } x, y \in \mathbb{Z}.
$$

hence any divisor of m and n is also a divisor of a_{k-1} . Hence a_{k-1} is a gcd.

The Bezout equation

The integers $m, n \in \mathbb{Z}$ are coprime if and only if there exists $x, y \in \mathbb{Z}$ such that

 $xm + yn = 1$

This equation is called the *Bezout equation*.

Proof

The proof follows immediately from the above proof for Euclid's algorithm.

Notes

- Euclid's algorithm works for
	- $\bullet~$ The integers $\mathbb Z.$
	- Polynomials ^R[*s*].
	- Scalar, stable, proper rational functions in *RH*[∞].
	- Matrix-valued stable, proper rational functions in *RH*[∞].
- The general algebraic structure for which this works is called ^a *ring*.
- The *if* direction is easy; e.g. for polynomials, if *^m* and *ⁿ* have ^a common zero, then their cannot exist ^a solution to the Bezout equation.

Scalar stable proper transfer functions

Suppose $m, n \in RH^{1\times 1}_{\infty}$. Then

d divides *n* if there exists $q \in RH^{1\times 1}_{\infty}$ such that $n = dq$

Notes

• \bullet *d* divides n if and only if $\frac{n}{d} \in RH^{1\times 1}_\infty$

Examples

•
$$
f_1(s) = \frac{s+1}{(s+2)^2}
$$
 $f_2(s) = \frac{s-1}{s+1}$ $f_3(s) = \frac{s-1}{(s+1)^2}$
\n $g_1(s) = \frac{s-1}{s+4}$ $g_2(s) = \frac{1}{3}$ $g_3(s) = \frac{s-1}{(s+2)^2}$

- \bullet f_1 divides g_2 and g_3 , but not g_1 .
- \bullet f_2 divides g_1 and g_3 , but not g_2 .
- \bullet f_3 divides g_3 , but not g_1 or g_2 .

Scalar stable proper transfer functions

 $d \in RH_{\infty}^{1\times1}$ is called a *greatest common divisor* (gcd) of $n,m \in RH_{\infty}^{1\times1}$ if

- *d* divides *ⁿ* and *d* divides *^m*.
- Every $a \in RH^{1\times 1}_\infty$ that divides both n and m also divides $d.$

ⁿ and *^m* are called *coprime* if *^d* and *^d*−¹ are stable and proper for all gcds *^d*.

Notes

• *ⁿ* and *^m* are coprime if and only if they have no common zeros in the right-half-plane, or at infinity.

Examples

•
$$
n = \frac{s}{(s+1)^2}
$$
 and $m = \frac{s-1}{s+1}$ are coprime. $xm + yn = 1$ is satisfied for
\n
$$
x = \frac{(2s+4)(s+1)^2}{s^3 + 3/2s^2 + 3s + 1/2}
$$
 and $y = \frac{(s-1/2)(s+1)^2}{s^3 + 3/2s^2 + 3s + 1/2}$
\n• $\frac{s-1}{(s+3)^2}$ and $\frac{s-2}{(s+3)^2}$ are not coprime.

Coprime factorization

Rational numbers

Given $p \in \mathbb{Q}$, find $n, m \in \mathbb{Z}$ such that

$$
p = \frac{n}{m}
$$
 and n, m are coprime

Rational functions; factorization over ^R[*s*]

Given $p \in RP^{1\times 1}$ find $n, m \in \mathbb{R}[s]$ such that $p=% {\textstyle\sum\nolimits_{\alpha}} q_{\alpha}q_{\beta}$ *n m* and $\,, m$ are coprime

n, m always exist; just cancel any common zeros.

Rational functions; factorization over $RH_{\infty}^{1\times1}$

Given $p \in RP^{1\times 1}$ find $n, m \in RH^{1\times 1}_{\infty}$ such that

$$
p = \frac{n}{m}
$$
 and n, m are coprime

In contrast to above: n, m must be stable proper transfer functions.

Coprime factorization over $RH^{1\times1}_{\infty}$

Given
$$
p \in RP^{1\times 1}
$$
 find $n, m \in RH^{1\times 1}_{\infty}$ such that
\n
$$
p = \frac{n}{m}
$$
 and n, m are coprime

Notes

- *n, ^m* must be stable proper transfer functions.
- A coprime factorization always exists; make all stable poles of *p* poles of *ⁿ*, all stable zeros of *p* poles of *^m*, and add zeros to *ⁿ* and *^m* as necessary.

Example

Suppose \hat{p} is

$$
\hat{p}(s) = \frac{(s-1)(s+2)}{(s-3)(s+4)}
$$

A coprime-factorization is

$$
\hat{n}(s) = \frac{s-1}{s+4}
$$
 $\hat{m}(s) = \frac{s-3}{s+2}$

Coprime transfer functions in RH_{∞} .

Suppose $M, N \in RH_{\infty}$, and let $D \in RH_{\infty}$ be square. Then

D right-divides *N* if there exists $Q \in RH_{\infty}$ such that $N = QD$

The square $D \in RH_{\infty}$ us called a *right greatest common divisor* of M,N if

- *D* right-divides *N* and *D* right-divides *M*.
- \bullet Every $A\in RH^{1\times 1}_\infty$ that right-divides both N and M also right-divides $D.$

^N and *^M* are called *right-coprime* if *^D* and *^D*−¹ are stable and proper for all gcds *^D*.

The Bezout equation

 $M, N \in RH_{\infty}$ are right-coprime if and only if there exists $X, Y \in RH_{\infty}$ such that $X M + Y N = I$

Coprime factorization in RH_{∞} .

Right-coprime factorization

Given $P \in RP$, a factorization such that

- \bullet $P = NM^{-1}$
- *N,M* [∈] *RH*[∞]
- $\bullet~~ N$ and M are right-coprime

is called ^a *right-coprime factorization* of *P*.

Left-coprime factorization

Given $P \in RH_{\infty}$, a factorization such that

- \bullet $P = \tilde{M}$ $\tilde{M}^{-1}\tilde{N}$
- \bullet $\tilde{N},$ $\tilde{\textrm{V}}$. \tilde{M} $M\in RH_\infty$
- \bullet \tilde{N} \tilde{N} and \tilde{M} are left-coprime

is called ^a *left-coprime factorization* of *P*.

Notes

• Left and right coprime factorizations always exist.

Example

Suppose *P* is

$$
\hat{P}(s) = \frac{s}{(s+1)(s-1)}
$$

A coprime-factorization is

$$
N(s) = \frac{s}{(s+1)^2} \qquad M(s) = \frac{s-1}{s+1}
$$

13 - 22 Internal stability and coprime factorization S. Lall, Stanford. 2001.11.12.01

Stabilization via coprime factorization

Scalar example

Suppose $\hat{p}_{22} \in RH^{1\times 1}_{\infty}$. Let

$$
\hat{p}_{22}(s) = \frac{\hat{n}(s)}{\hat{m}(s)}
$$

be a coprime factorization, and $\hat{x}, \hat{y} \in RH^{1\times 1}_\infty$ satisfy the Bezout equation

$$
\hat{x}(s)\hat{m}(s) - \hat{y}(s)\hat{n}(s) = 1
$$

Theorem

ˆ $\hat{k}(s) = \frac{\hat{y}(s)}{\hat{y}(s)}$ $\frac{\partial f(x)}{\partial x}(s)$ is a stabilizing controller.

Proof

$$
\hat{Z} = \begin{bmatrix} I & -\hat{k} \\ -\hat{p}_{22} & I \end{bmatrix}^{-1} = \frac{1}{1 - \hat{k}\hat{p}_{22}} \begin{bmatrix} 1 & \hat{k} \\ \hat{p}_{22} & 1 \end{bmatrix}
$$

$$
= \frac{1}{\hat{x}\hat{m} - \hat{y}\hat{n}} \begin{bmatrix} \hat{x}\hat{m} & \hat{y}\hat{m} \\ \hat{x}\hat{n} & \hat{x}\hat{m} \end{bmatrix} = \begin{bmatrix} \hat{x}\hat{m} & \hat{y}\hat{m} \\ \hat{x}\hat{n} & \hat{x}\hat{m} \end{bmatrix}
$$

which is stable.

Every stabilizing controller

Suppose $\hat{p}_{22} \in RH^{1\times 1}_{\infty}$. Let $\hat{p}_{22}(s)=\hat{n}(s)\hat{m}^{-1}(s)$ be a coprime factorization, and $\hat{x},\hat{y} \in$ *RH*^{1×1}_∞² satisfy the Bezout equation $\hat{x}(s)\hat{m}(s) - \hat{y}(s)\hat{n}(s) = 1$.

Theorem

Every stabilizing controller has the form

$$
\hat{k} = \frac{\hat{y} - \hat{m}\hat{q}}{\hat{x} - \hat{n}\hat{q}}
$$

for some $q \in RH^{1\times 1}_{\infty}$.

Proof

The proof that \hat{k} $\,k\,$ is stabilizing is the same as before, since

$$
(\hat{x} - \hat{n}\hat{q})\hat{m} - (\hat{y} - \hat{m}\hat{q}) = 1
$$

Then

$$
\hat{Z} = \begin{bmatrix} (\hat{x} - \hat{n}\hat{q})\hat{m} & (\hat{y} - \hat{m}\hat{q})\hat{m} \\ (\hat{x} - \hat{n}\hat{q})\hat{n} & (\hat{x} - \hat{n}\hat{q})\hat{m} \end{bmatrix}
$$

which is stable.

We will prove that every \hat{k} $\,k$ has this form in the matrix case.