Engr210a Lecture 13: Internal stability and coprime factorization

- Internal stability
- Stabilizing controllers
- Achievable closed-loop maps
- Interpolation
- Parametrization of stabilizing controllers
- Division and coprimeness
- Euclid's algorithm
- The Bezout equation
- Coprime factorization in H_{∞} .

Alternative characterization of internal stability

This interconnection is equivalent to

$$\begin{bmatrix} I & -K \\ -P_{22} & I \end{bmatrix} \begin{bmatrix} r_1 \\ r_2 \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 \end{bmatrix}$$

Let

$$Z = \begin{bmatrix} I & -K \\ -P_{22} & I \end{bmatrix}^{-1} = \begin{bmatrix} (I - KP_{22})^{-1} & K(I - P_{22}K)^{-1} \\ (I - P_{22}K)^{-1}P_{22} & (I - P_{22}K)^{-1} \end{bmatrix}$$

Suppose the realizations for P_{22} and K are stabilizable and detectable. Then $Z \in H_{\infty} \iff$ the interconnection is internally stable

Stabilizing controllers

Controller K is called *stabilizing* if the interconnection of P_{22} and K is internally stable.

Characterizations

Assume the realizations for P_{22} and K are stabilizable and detectable. Then

• K is stabilizing if and only if

$$\begin{bmatrix} I & -K \\ -P_{22} & I \end{bmatrix}^{-1} = \begin{bmatrix} (I - KP_{22})^{-1} & K(I - P_{22}K)^{-1} \\ (I - P_{22}K)^{-1}P_{22} & (I - P_{22}K)^{-1} \end{bmatrix}$$
 is stable

• Special case: if K is stable, then

K is stabilizing $\iff (I - P_{22}K)^{-1}P_{22}$ is stable

Proof: Note that

$$\begin{bmatrix} I & -K \\ -P_{22} & I \end{bmatrix}^{-1} = \begin{bmatrix} I + K(I - P_{22}K)^{-1}P_{22} & K(I + (I - P_{22}K)^{-1}P_{22}) \\ (I - P_{22}K)^{-1}P_{22} & I + (I - P_{22}K)^{-1}P_{22}K \end{bmatrix}$$

• Another special case: if P is stable, then

K is stabilizing $\iff K(I - P_{22}K)^{-1}$ is stable

Stable interconnections

Recall the set of realizable maps $H: w \to z$ is

$$\mathcal{H}_{\mathsf{rlzbl}} = \{ \hat{H} \in RP \; ; \; H = \underline{S}(P, K) \text{ for some } \hat{K} \in RP \}$$
$$= \{ P_{11} + P_{12}RP_{21} \; ; \; \hat{R} \in RP \}$$

Define the set

$$\mathcal{H}_{\mathsf{stable}} = \left\{ \begin{array}{l} \hat{H} \in RP \ ; \ H = \underline{S}(P, K) \ \text{for some} \ \hat{K} \in RP \\ & \text{the interconnection is internally stable} \end{array} \right\}$$

the set of closed-loop maps achievable by stabilizing controllers.

Theorem

Suppose P_{22} is proper. Then \mathcal{H}_{stable} is affine.

Theorem

Suppose P_{22} is proper. Then \mathcal{H}_{stable} is affine.

Proof

•
$$H \in \mathcal{H}_{stable}$$
 if and only if $H = P_{11} + P_{12}RP_{21}$, and

$$Z = \begin{bmatrix} I & -K \\ -P_{22} & I \end{bmatrix}^{-1} = \begin{bmatrix} (I - KP_{22})^{-1} & K(I - P_{22}K)^{-1} \\ (I - P_{22}K)^{-1}P_{22} & (I - P_{22}K)^{-1} \end{bmatrix}$$
 is stable

Substituting ${\cal R}={\cal K}(I-P_{22}{\cal K})^{-1}$ gives

$$Z = \begin{bmatrix} I + RP_{22} & R\\ (I + P_{22}R)P_{22} & I + P_{22}R \end{bmatrix}$$

Then $K = (I + RP_{22})^{-1}R$ is stabilizing if and only if Z is stable.

- The map from R to Z is affine, and therefore the preimage of H_{∞} under this map is an affine set in L_{∞} .
- Hence the set of R such that $K = (I + RP_{22})^{-1}R$ is stabilizing is an affine set.
- The map from R to H is affine, and the image of an affine set under an affine map is affine.

Interpolation conditions

We have

$$K = (I + RP_{22})^{-1}R \text{ is stabilizing} \quad \Longleftrightarrow \quad Z = \begin{bmatrix} I + RP_{22} & R\\ (I + P_{22}R)P_{22} & I + P_{22}R \end{bmatrix} \text{ is stable}$$

For scalar plant and controller \hat{P}_{22} and \hat{K}_{22} , let $T = RP_{22}$. Then

$$K = (I+T)^{-1}TP_{22}^{-1} \text{ is stabilizing } \iff Z = \begin{bmatrix} I+T & TG^{-1} \\ (I+T)P_{22} & I+T \end{bmatrix} \text{ is stable}$$

Let z_1, \ldots, z_k be the unstable zeros and p_1, \ldots, p_m be the unstable poles of P_{22} . Assume they are distinct. Then

 $K = (I+T)^{-1}TP_{22}^{-1} \text{ is stabilizing } \iff \hat{T} \in H_{\infty}$ $\hat{T}(p_i) = -1 \text{ for } i = 1, \dots, m$ $\hat{T}(z_i) = 0 \text{ for } i = 1, \dots, k$

relative degree of $T \geq$ relative degree of P_{22} .

Then the closed loop map is $\underline{S}(P,K)=P_{11}+\frac{P_{12}TP_{21}}{P_{22}}$

Note that the maximum modulus principle then implies that $||Z_{11}|| \ge 1$ and $||Z_{22}|| \ge 1$ if P_{22} has RHP zeroes; hence weights are essential.

Optimization and interpolation

The general problem is

 $\begin{array}{ll} \mbox{minimize} & \|H\| \\ \mbox{subject to} & H = \underline{S}(P,K) \mbox{ for some } \hat{K} \in RP \\ & \mbox{The closed-loop is stable} \end{array}$

Equivalent formulation for scalar P_{22}

Let z_1, \ldots, z_k be the unstable zeros and p_1, \ldots, p_m be the unstable poles of P_{22} . Assume they are distinct.

$$\begin{array}{ll} \text{minimize} & \|P_{11} + P_{12}TP_{22}^{-1}P_{21}\| \\ \text{subject to} & T \in H_{\infty}^{1 \times 1} \\ & \hat{T}(p_i) = -1 \text{ for } i = 1, \dots, m \\ & \hat{T}(z_i) = 0 \text{ for } i = 1, \dots, k \\ & \text{relative degree of } T \geq \text{relative degree of } P_{22} \end{array}$$

This is an example of a *Nevanlinna-Pick* interpolation problem. In general, these problems are hard to solve (but it can be done).

Stabilizing controllers for stable plants

Suppose \boldsymbol{P} is stable. Then

K is stabilizing $\iff K = (I + RP_{22})^{-1}R$ for some stable R

Then

$$\mathcal{H}_{\mathsf{stable}} = \left\{ P_{11} + P_{12}RP_{21} \ ; \ \hat{R} \in H_{\infty} \right\}$$

Proof

 ${\cal Z}$ is stable if and only if ${\cal R}$ is stable, since

$$Z = \begin{bmatrix} I + RP_{22} & R\\ (I + P_{22}R)P_{22} & I + P_{22}R \end{bmatrix}$$

Notes

- If *P* is stable, then the above gives a simple parametrization of all stabilizing controllers.
- What about when *P* is unstable? We need the notion of *coprime factorization*.

13 - 9 Internal stability and coprime factorization

Optimization for stable P

The general problem is

 $\begin{array}{ll} \mbox{minimize} & \|H\| \\ \mbox{subject to} & H = \underline{S}(P,K) \mbox{ for some } \hat{K} \in RP \\ & \mbox{The closed-loop is stable} \end{array}$

Equivalent formulation for stable $\ensuremath{\textit{P}}$

minimize	$\ P_{11} + P_{12}RP_{21}\ $
subject to	$R \in H_{\infty}$

Once the optimal R is found, then the optimal K is given by

 $K = (I + RP_{22})^{-1}R$

Coprimeness

Suppose $n, d \in \mathbb{Z}$ are integers. Then

d divides n if there exists $q \in \mathbb{Z}$ such that n = dq

The integer d is called the greatest common divisor (gcd) of $n, m \in \mathbb{Z}$ if

- d divides n and d divides m.
- Every integer a that divides both n and m also divides d.

n and m are called *coprime* if their gcd is 1.

Examples

- 10 and 21 are coprime.
- 12 and 21 are not coprime. Their gcd is 3.

Division

Given $n,m\in\mathbb{Z},$ and $n\leq m.$ Then there exists a unique $q\in\mathbb{Z}$ and $r\in\mathbb{Z}$ with r< n such that

$$m = nq + r$$

 \boldsymbol{q} is the quotient, \boldsymbol{r} is the remainder.

Euclid's algorithm

Euclid's algorithm gives a way to find the gcd of $n, m \in \mathbb{Z}$.

The gcd is then a_{k-1} .

Polynomials

Let $\mathbb{R}[s]$ be the set of polynomials in the variable s. Suppose $n, d \in \mathbb{R}[s]$ are polynomials. Then

d divides n if there exists $q \in \mathbb{R}[s]$ such that n = dq

The polynomial d is called a greatest common divisor (gcd) of $n, m \in \mathbb{R}[s]$ if

- d divides n and d divides m.
- Every $a \in \mathbb{R}[s]$ that divides both n and m also divides d.

n and m are called *coprime* if their gcd is a scalar.

Examples

- (x-1)(x-2) and (x-3) are coprime.
- $(x-1)(x^2+2)$ and (x-1) are not coprime. A gcd is any scalar multiple of (x-1).

Polynomials

Given two polynomials n(s) and m(s), we can apply Euclid's algorithm to find their gcd.

Euclid's algorithm

Euclid's algorithm gives a way to find the gcd of $n, m \in \mathbb{R}[s]$.

$$a_0 = m; \quad b_0 = n; \quad k = 1;$$

Repeat {
Find q and r so that $a_k = qb_k + r;$
 $a_k = b_{k-1}; \quad b_k = r$
 $k = k + 1;$
} until $r = 0.$

A gcd is then a_{k-1} .

Euclid's algorithm (\sim 300 B.C.)

 a_{k-1} is the gcd of n and m.

Proof

• We have $a_0 = m$, $a_1 = n$, and $a_k = 0$, where

$$a_{i-2} = q_i a_{i-1} + a_i$$
 for $i = 2, \dots, k$

- We know a_{k-1} divides a_{k-2} , and the above equation implies that if a_i divides a_{i-1} then a_i divides a_{i-2} . Hence by induction, a_{k-1} divides a_0 and a_1 ; that is, a_{k-1} divides m and n.
- Also, $a_i = a_{i-2} q_i a_{i-1}$ implies that

 $a_i = xa_{i-2} + ya_{i-1}$ for some $x, y \in \mathbb{Z}$.

for i = 2, ..., k - 1. That is, a_i is a linear combination of a_{i-2} and a_{i-1} where the coefficients are integers. By induction again, we have

$$a_{k-1} = xa_0 + ya_1$$

 $a_{k-1} = xm + yn$ for some $x, y \in \mathbb{Z}$.

hence any divisor of m and n is also a divisor of a_{k-1} . Hence a_{k-1} is a gcd.

The Bezout equation

The integers $m, n \in \mathbb{Z}$ are coprime if and only if there exists $x, y \in \mathbb{Z}$ such that

xm + yn = 1

This equation is called the *Bezout equation*.

Proof

The proof follows immediately from the above proof for Euclid's algorithm.

Notes

- Euclid's algorithm works for
 - The integers \mathbb{Z} .
 - Polynomials $\mathbb{R}[s]$.
 - Scalar, stable, proper rational functions in RH_{∞} .
 - Matrix-valued stable, proper rational functions in RH_{∞} .
- The general algebraic structure for which this works is called a *ring*.
- The *if* direction is easy; e.g. for polynomials, if *m* and *n* have a common zero, then their cannot exist a solution to the Bezout equation.

Scalar stable proper transfer functions

Suppose $m, n \in RH^{1 \times 1}_{\infty}$. Then

d divides n if there exists $q \in RH_{\infty}^{1 \times 1}$ such that n = dq

Notes

• d divides n if and only if $\frac{n}{d} \in RH_{\infty}^{1 \times 1}$

Examples

•
$$f_1(s) = \frac{s+1}{(s+2)^2}$$
 $f_2(s) = \frac{s-1}{s+1}$ $f_3(s) = \frac{s-1}{(s+1)^2}$
 $g_1(s) = \frac{s-1}{s+4}$ $g_2(s) = \frac{1}{3}$ $g_3(s) = \frac{s-1}{(s+2)^2}$

- f_1 divides g_2 and g_3 , but not g_1 .
- f_2 divides g_1 and g_3 , but not g_2 .
- f_3 divides g_3 , but not g_1 or g_2 .

Scalar stable proper transfer functions

 $d \in RH_{\infty}^{1 \times 1}$ is called a greatest common divisor (gcd) of $n, m \in RH_{\infty}^{1 \times 1}$ if

- d divides n and d divides m.
- Every $a \in RH_{\infty}^{1 \times 1}$ that divides both n and m also divides d.

n and m are called *coprime* if d and d^{-1} are stable and proper for all gcds d.

Notes

• *n* and *m* are coprime if and only if they have no common zeros in the right-half-plane, or at infinity.

Examples

•
$$n = \frac{s}{(s+1)^2}$$
 and $m = \frac{s-1}{s+1}$ are coprime. $xm + yn = 1$ is satisfied for
 $x = \frac{(2s+4)(s+1)^2}{s^3 + 3/2 s^2 + 3 s + 1/2}$ and $y = \frac{(s-1/2)(s+1)^2}{s^3 + 3/2 s^2 + 3 s + 1/2}$
• $\frac{s-1}{(s+3)^2}$ and $\frac{s-2}{(s+3)^2}$ are not coprime.

Coprime factorization

Rational numbers

Given $p\in \mathbb{Q},$ find $n,m\in \mathbb{Z}$ such that

$$p = \frac{n}{m}$$
 and n, m are coprime

Rational functions; factorization over $\mathbb{R}[s]$

Given $p\in RP^{1\times 1}$ find $n,m\in \mathbb{R}[s]$ such that $p=\frac{n}{m}\qquad \text{and }n,m \text{ are coprime}$

n,m always exist; just cancel any common zeros.

Rational functions; factorization over $RH_{\infty}^{1\times 1}$

Given $p \in RP^{1 \times 1}$ find $n, m \in RH_{\infty}^{1 \times 1}$ such that

$$p = \frac{n}{m}$$
 and n, m are coprime

In contrast to above: n, m must be stable proper transfer functions.

Coprime factorization over $RH^{1\times 1}_\infty$

Given
$$p\in RP^{1\times 1}$$
 find $n,m\in RH^{1\times 1}_\infty$ such that
$$p=\frac{n}{m} \quad \text{ and } n,m \text{ are coprime}$$

Notes

- n, m must be stable proper transfer functions.
- A coprime factorization always exists; make all stable poles of p poles of n, all stable zeros of p poles of m, and add zeros to n and m as necessary.

Example

Suppose \hat{p} is

$$\hat{p}(s) = \frac{(s-1)(s+2)}{(s-3)(s+4)}$$

A coprime-factorization is

$$\hat{n}(s) = \frac{s-1}{s+4}$$
 $\hat{m}(s) = \frac{s-3}{s+2}$

Coprime transfer functions in RH_{∞} .

Suppose $M, N \in RH_{\infty}$, and let $D \in RH_{\infty}$ be square. Then

D right-divides N if there exists $Q \in RH_{\infty}$ such that N = QD

The square $D \in RH_{\infty}$ us called a *right greatest common divisor* of M, N if

- D right-divides N and D right-divides M.
- Every $A \in RH_{\infty}^{1 \times 1}$ that right-divides both N and M also right-divides D.

N and M are called *right-coprime* if D and D^{-1} are stable and proper for all gcds D.

The Bezout equation

 $M,N\in RH_\infty$ are right-coprime if and only if there exists $X,Y\in RH_\infty$ such that XM+YN=I

Coprime factorization in RH_{∞} .

Right-coprime factorization

Given $P \in RP$, a factorization such that

- $P = NM^{-1}$
- $N, M \in RH_{\infty}$
- N and M are right-coprime

is called a *right-coprime factorization* of *P*.

Left-coprime factorization

Given $P \in RH_{\infty}$, a factorization such that

- $P = \tilde{M}^{-1}\tilde{N}$
- $\tilde{N}, \tilde{M} \in RH_{\infty}$
- \tilde{N} and \tilde{M} are left-coprime

is called a *left-coprime factorization* of P.

Notes

• Left and right coprime factorizations always exist.

Example

Suppose \boldsymbol{P} is

$$\hat{P}(s) = \frac{s}{(s+1)(s-1)}$$

A coprime-factorization is

$$N(s) = \frac{s}{(s+1)^2} \qquad M(s) = \frac{s-1}{s+1}$$

Stabilization via coprime factorization

Scalar example

Suppose $\hat{p}_{22} \in RH^{1\times 1}_{\infty}$. Let

$$\hat{p}_{22}(s) = \frac{\hat{n}(s)}{\hat{m}(s)}$$

be a coprime factorization, and $\hat{x},\hat{y}\in RH^{1\times 1}_\infty$ satisfy the Bezout equation

$$\hat{x}(s)\hat{m}(s) - \hat{y}(s)\hat{n}(s) = 1$$

Theorem

$$\hat{k}(s) = rac{\hat{y}(s)}{\hat{x}(s)}$$
 is a stabilizing controller.

Proof

$$\hat{Z} = \begin{bmatrix} I & -\hat{k} \\ -\hat{p}_{22} & I \end{bmatrix}^{-1} = \frac{1}{1 - \hat{k}\hat{p}_{22}} \begin{bmatrix} 1 & \hat{k} \\ \hat{p}_{22} & 1 \end{bmatrix}$$
$$= \frac{1}{\hat{x}\hat{m} - \hat{y}\hat{n}} \begin{bmatrix} \hat{x}\hat{m} & \hat{y}\hat{m} \\ \hat{x}\hat{n} & \hat{x}\hat{m} \end{bmatrix} = \begin{bmatrix} \hat{x}\hat{m} & \hat{y}\hat{m} \\ \hat{x}\hat{n} & \hat{x}\hat{m} \end{bmatrix}$$

which is stable.

Every stabilizing controller

Suppose $\hat{p}_{22} \in RH_{\infty}^{1\times 1}$. Let $\hat{p}_{22}(s) = \hat{n}(s)\hat{m}^{-1}(s)$ be a coprime factorization, and $\hat{x}, \hat{y} \in RH_{\infty}^{1\times 1}$ satisfy the Bezout equation $\hat{x}(s)\hat{m}(s) - \hat{y}(s)\hat{n}(s) = 1$.

Theorem

Every stabilizing controller has the form

$$\hat{k} = \frac{\hat{y} - \hat{m}\hat{q}}{\hat{x} - \hat{n}\hat{q}}$$

for some $q \in RH_{\infty}^{1 \times 1}$.

Proof

The proof that \hat{k} is stabilizing is the same as before, since

$$(\hat{x} - \hat{n}\hat{q})\hat{m} - (\hat{y} - \hat{m}\hat{q}) = 1$$

Then

$$\hat{Z} = \begin{bmatrix} (\hat{x} - \hat{n}\hat{q})\hat{m} & (\hat{y} - \hat{m}\hat{q})\hat{m} \\ (\hat{x} - \hat{n}\hat{q})\hat{n} & (\hat{x} - \hat{n}\hat{q})\hat{m} \end{bmatrix}$$

which is stable.

We will prove that every \hat{k} has this form in the matrix case.