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Engr210a Lecture 13: Internal stability and coprime factorization

e [nternal stability

e Stabilizing controllers

e Achievable closed-loop maps

e Interpolation

e Parametrization of stabilizing controllers
e Division and coprimeness

e Euclid’'s algorithm

e The Bezout equation

e Coprime factorization in H .
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Alternative characterization of internal stability

f2 — >« P, = > T

r,< > K %fl

This interconnection is equivalent to

k) =

Let
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5 [ I —K] o [ (I — KPy)™! K<1_p22K)_1]
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<[ — PQQK)_1P22 ([ — PQQK)_l

Suppose the realizations for Py and K are stabilizable and detectable. Then

Z € Hy > the interconnection is internally stable
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Stabilizing controllers

Controller K is called stabilizing if the interconnection of Py and K is internally stable.

Characterizations

Assume the realizations for P, and K are stabilizable and detectable. Then

e [ is stabilizing if and only if

[ I —K] o [( (I — KPp)! K(I- PQQK)ll

Py I = PyuK)'Py (I — PpK)™ s stable

e Special case: if K is stable, then
K is stabilizing — (I — P22K>_1P22 is stable
Proof: Note that
[ I - K] - [1 + K(I — PyK) ' Py K(I+(I- PQQK)UDQQ)]
—Py 1 (I — PyoKK) 1Py I+ (I — PpK) 'PpK
e Another special case: if P is stable, then

K is stabilizing — K(I — Py K) ! is stable
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Stable interconnections
Recall the set of realizable maps H : w — z is
Huw = {H € RP ; H= S(P,K) for some K € RP}
— {Py; + P,RPy : R e RP}
Define the set
Hstable{ﬁERP;Hﬁ(RK) for some K € RP }

the interconnection is internally stable

the set of closed-loop maps achievable by stabilizing controllers.

Theorem

Suppose Pss is proper. Then Hgiaple is affine.
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Theorem

Suppose Py is proper. Then Hgiaple is affine.

Proof
o H € Hgaple if and onIy if H = Py + PoRP,, and

S, [ 1 =K} _[ U=KPn)' K(I—PpK)
—Py 1 (I — PyK) 'Pyy (I — PpK)™!

Substituting R = K (I — Py K) ! gives

,_ [ T+RP» R
~ |(I+ PuR)Py I+ PoR

Then K = (I + RP) 'R is stabilizing if and only if Z is stable.

] Is stable

e The map from R to Z is affine, and therefore the preimage of H,, under this map is
an affine set in L.

e Hence the set of R such that K = (I + RP») 'R is stabilizing is an affine set.

e The map from R to H is affine, and the image of an affine set under an affine map
is affine.
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Interpolation conditions

We have

I + RP» R

K = (I + RPy») 'R is stabilizing <<= 7= [<I+ PyoR)Pyy I+ PyR

] Is stable

For scalar plant and controller ]522 and ]A(QQ, let T' = RP5. Then

I+T TG

K = (I+T)_1TP2_21 is stabilizing <— Z = [(I+T)P I+ T
22

] Is stable

Let 21, ..., 2, be the unstable zeros and p4, ..., p,, be the unstable poles of . Assume
they are distinct. Then

K = (I+T)"'TP;! is stabilizing <= T € Hy
T(p)=—1fori=1,....,m
T(z)=0fori=1,...,k

relative degree of 1" > relative degree of Ps.

P19 T Py

Pao
Note that the maximum modulus principle then implies that ||Z11]| > 1 and || Zssf| > 1 if
P55 has RHP zeroes; hence weights are essential.

Then the closed loop map is S(P, K) = Py +
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Optimization and interpolation

The general problem is
minimize | H||
subject to  H = S(P, K) for some K € RP

The closed-loop is stable

Equivalent formulation for scalar Py

Let z1,..., 2, be the unstable zeros and p4, ..., p,, be the unstable poles of . Assume

they are distinct.
minimize | P+ P12TP2_21P21H
subject to T € H'*!

T(p;)=—1fori=1,...,m

T(z)=0fori=1,...k
relative degree of 1" > relative degree of Ps.

This is an example of a Nevanlinna-Pick interpolation problem. In general, these problems
are hard to solve (but it can be done).
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Stabilizing controllers for stable plants
Suppose P is stable. Then

K is stabilizing — K = (I + RP») 'R for some stable R

Then A
Hstable = {Pn + PoRPy 3 R e Hoo}

Proof

Z is stable if and only if R is stable, since

,_ [ T+RP» R
= |(I+ PuR)Py I+ PoR

Notes

e If P is stable, then the above gives a simple parametrization of all stabilizing con-
trollers.

e What about when P is unstable? We need the notion of coprime factorization.
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Optimization for stable P
The general problem is
minimize | H||
subject to  H = S(P, K) for some K € RP

The closed-loop is stable

Equivalent formulation for stable P

minimize | P11+ ProRPo |
subject to R e Hy

Once the optimal R is found, then the optimal K is given by
K =(I+RP») 'R

S. Lall, Stanford. 2001.11.12.01
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Coprimeness

Suppose n, d € Z are integers. Then

d divides n if there exists ¢ € Z such that n = dg

The integer d is called the greatest common divisor (gcd) of n,m € Z if

e ( divides n and d divides m.

e Every integer a that divides both n and m also divides d.
n and m are called coprime if their gcd is 1.

Examples

e 10 and 21 are coprime.

e 12 and 21 are not coprime. Their gcd is 3.
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Division

Given n,m € Z, and n < m. Then there exists a unique ¢ € Z and r € Z with r < n
such that

m=nq-+r
q is the quotient, r is the remainder.

Euclid’s algorithm

Euclid’s algorithm gives a way to find the gcd of n,m € Z.

ar. bk
ap=m; by=n; k=1; 57112
Repeat { 1219
Find ¢ and 7 so that a;. = gb,. + 7; J |3
ap =br—1; bp=r S0
k=Fk+1;
}until 7 = 0.

The gcd is then aj_1.
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Polynomials

Let R[s| be the set of polynomials in the variable s.

Suppose n, d € R|[s] are polynomials. Then

d divides n if there exists ¢ € R|s] such that n = dq

The polynomial d is called a greatest common divisor (gcd) of n,m € R]s| if

e ( divides n and d divides m.

e Every a € R|s] that divides both n and m also divides d.
n and m are called coprime if their gcd is a scalar.

Examples
e (x—1)(x—2)and (x — 3) are coprime.

o (x—1)(z*+2) and (z — 1) are not coprime. A gcd is any scalar multiple of (z — 1).
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Polynomials

Given two polynomials n(s) and m(s), we can apply Euclid's algorithm to find their gcd.

Euclid’s algorithm

Euclid’s algorithm gives a way to find the gcd of n,m € Rs].

apy=m; by=n;, k=1;
Repeat {
Find ¢ and r so that a; = qby. + 7;
ap =by—1; b=
k=Fk+1;
} until = 0.

A gcd is then a;_1.

ay b

P53 4+652+3s+1|s*+3s2+s+25°+1
st 4383+ s5+2s52+1 253 4+45>+2s
253 +45°+2s —s?+1
—s°+1 4s+4

4s+4 0
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Euclid’s algorithm (~ 300 B.C.)

aj_1 is the gcd of n and m.

Proof
e We have ap = m, a; = n, and a; = 0, where
i—o = ¢;Ai—1 + a; fore=2,...k
e We know a;_; divides a;_o, and the above equation implies that if a; divides a;_4

then a; divides a;_o. Hence by induction, a;_1 divides ay and aq; that is, a;_1 divides
m and n.

e Also, a; = a;_o — g;a;_1 implies that
a; = TAj_9 + Ya;_q for some x,y € Z.

forio. =2,...,k— 1. That is, a; is a linear combination of a;,_s and a;_; where the
coefficients are integers. By induction again, we have

Ap—1 = XAy + yaq

ap_1 = xm+yn for some =,y € Z.

hence any divisor of m and n is also a divisor of a;_1. Hence a;_; is a gcd.
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The Bezout equation

The integers m,n € Z are coprime if and only if there exists x,y € Z such that
xm +yn =1

This equation is called the Bezout equation.

Proof
The proof follows immediately from the above proof for Euclid’'s algorithm.

Notes

e Euclid’s algorithm works for

e The integers Z.

e Polynomials R|s].

e Scalar, stable, proper rational functions in RH ..

e Matrix-valued stable, proper rational functions in RH .

e The general algebraic structure for which this works is called a ring.

e The if direction is easy; e.g. for polynomials, if m and n have a common zero, then
their cannot exist a solution to the Bezout equation.
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Scalar stable proper transfer functions

Suppose m,n € RH*!. Then

d divides n if there exists ¢ € RH'*! such that n = dg
Notes
e ( divides n if and only if % c RH;O><1
Examples
 hO= T M= RE=(
91(s) = ili g2(s) = % g3(s) = <§;21)2

e f; divides g5 and g3, but not ¢.
e f5 divides g; and g3, but not g».

e f3 divides g3, but not g; or go.
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Scalar stable proper transfer functions
d € RH!*!is called a greatest common divisor (gcd) of n,m € RHL! if

e ( divides n and d divides m.

e Every a € RH!*! that divides both n and m also divides d.

n and m are called coprime if d and d~! are stable and proper for all gcds d.

Notes
e 1 and m are coprime if and only if they have no common zeros in the right-half-plane,
or at infinity.
Examples
S s—1 . . .
o N = and m = are coprime. xm + yn = 1 is satisfied for
(s+ 1) s+1

(2s+4)(s+1)

(s —1/2) (s + 1)
aj:
$34+3/2s24+3s+1/2

T $43/282+3s+1/2

and Y

s —1 d s — 2
an
(s + 3)? (s +3)?

are not coprime.
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Coprime factorization
Rational numbers

Given p € Q, find n, m € 7Z such that

p=— and n, m are coprime
m

Rational functions; factorization over R|s]

Given p € RPY! find n, m € R[s] such that

n

p= and n, m are coprime

m

n, m always exist; just cancel any common zeros.

Rational functions; factorization over RH'*!

Given p € RPY! find n,m € RH*! such that

pD=— and n, m are coprime
m

In contrast to above: n, m must be stable proper transfer functions.

S. Lall, Stanford. 2001.11.12.01
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Coprime factorization over RH!*!

Given p € RPY! find n,m € RH*! such that

pD=— and n, m are coprime
m

Notes

e 1, m must be stable proper transfer functions.

e A coprime factorization always exists; make all stable poles of p poles of n, all stable
zeros of p poles of m, and add zeros to n and m as necessary.

Example

Suppose p is

o) — (s —1)(s+2)
Pls) = T3y (s 4 )
A coprime-factorization is
als) =2 ls) = T
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Coprime transfer functions in RH..

Suppose M, N € RH, and let D € RH., be square. Then
D right-divides NV if there exists () € RH, such that N = QD

The square D € RH, us called a right greatest common divisor of M, N if

e [ right-divides N and D right-divides M.
e Every A € RH*! that right-divides both NV and M also right-divides D.

N and M are called right-coprime if D and D! are stable and proper for all geds D.

The Bezout equation

M, N € RH, are right-coprime if and only if there exists X,Y € RH., such that
XM+YN=1
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Coprime factorization in RH .

Right-coprime factorization

Given P € RP, a factorization such that
o P=NM!
e N, M € RH
e N and M are right-coprime

is called a right-coprime factorization of P.

Left-coprime factorization

Given P € RH_,, a factorization such that
e P=M"'N
e N.M € RH.,
e N and M are left-coprime

is called a left-coprime factorization of P.

S. Lall, Stanford. 2001.11.12.01

Notes

e Left and right coprime factoriza-
tions always exist.

Example
Suppose P is
. S
P(s) =
(5) (s+1)(s—1)
A coprime-factorization is
S s—1
N — M =
=iy MU=
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Stabilization via coprime factorization

Scalar example

Suppose pgo € RHI*1. Let

)
p22< ) - <8)

m

be a coprime factorization, and Z,y € RH*! satisfy the Bezout equation

z(s)m(s) — y(s)n(s) =1

Theorem
k(s) = %(S) is a stabilizing controller.
z(s)
Proof
e —1 e
o [ I —k] _ 1 [1 k
_ﬁ22 ! 1—]%]522 ]322 1_
1 T gm T gm]
 am—gn | TN Tm| | In m|

which is stable.
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Every stabilizing controller

Suppose pPao € RHI*1. Let pos(s) =
RHI*! satisfy the Bezout equation Z(s)r(s) — g(s)n(s) = 1.

>
N
(V)
> N—
|
—_
(V)
N—
o
(0]
Q)
(@)
(@)
©
=,
3
(0]
F
(@)
—t
O
=,
N
Q)
g
(@)
>
Q)
-
o
=>
N
M

Theorem

Every stabilizing controller has the form

k

for some ¢ € RH'*!.

Proof

The proof that ks stabilizing is the same as before, since
(& —ng)m — (§ —mq) =1

Then

which is stable.

We will prove that every i has this form in the matrix case.



