Engr210a Lecture 14: Youla parametrization

- Coprime factorization over *RH*[∞]
- Internal stability
- Construction of ^a stabilizing controller
- Youla parametrization of all stabilizing controllers
- LFT formulation
- Affine parametrization of closed-loop map
- Optimization

Coprime factorization in *RH*[∞]

Given $G \in RP$, there exist both left and right coprime factorizations.

 \bullet *Right:* There exist $N_r, M_r, X_r, Y_r \in RH_{\infty}$ such that N_r, M_r are right-coprime, and $G = N_r M_r^{-1}$ and $X_r M_r - Y_r N_r = I$

 \bullet *Left:* There exist $N_l, M_l, X_l, Y_l \in RH_{\infty}$ such that N_l, M_l are left-coprime, and

 $G = M_l^{-1} N_l$ and $M_l X_l - N_l Y_l = I$

Double coprime factorization

Given $G \in RP$, there exist left and right coprime factorizations, with the additional property that \mathbf{r} and \mathbf{r} and \mathbf{r}

$$
\begin{bmatrix} X_r & -Y_r \ -N_l & M_l \end{bmatrix} \begin{bmatrix} M_r & Y_l \ N_r & X_l \end{bmatrix} = I
$$

Coprime factorization and internal stability

Define the maps

$$
W: \begin{bmatrix} d_1 \\ d_2 \end{bmatrix} \mapsto \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \quad \text{and} \quad S: \begin{bmatrix} d_1 \\ d_2 \end{bmatrix} \mapsto \begin{bmatrix} q_1 \\ q_2 \end{bmatrix}
$$

Theorem

Suppose $P_{22}, K \in RP$ and $P_{22} = N_r M_r^{-1}$, $K = U_r V_r^{-1}$ are right coprime factorizations. Then

 $W \in RH_{\infty} \qquad \Longleftrightarrow \qquad S \in RH_{\infty}$

Theorem

Proof: \Leftarrow

• \bullet $\begin{bmatrix} d_1 \ d_2 \end{bmatrix}$ = $S = \begin{bmatrix} M_r & -U_r \ -N_r & V_r \end{bmatrix} \begin{bmatrix} q_1 \ q_2 \end{bmatrix} \quad \quad \Longrightarrow \quad \quad S = \begin{bmatrix} M_r & -U_r \ -N_r & V_r \end{bmatrix}^{-1}$ • \bullet $\begin{bmatrix} v_1 \ v_2 \end{bmatrix}$ = $W = \begin{bmatrix} M_r & 0 \ N_r & 0 \end{bmatrix} \begin{bmatrix} q_1 \ q_2 \end{bmatrix} \quad \quad \Longrightarrow \quad \quad W = \begin{bmatrix} M_r & 0 \ N_r & 0 \end{bmatrix}$ *S*

• Hence *S* [∈] *RH*[∞] implies *W* [∈] *RH*[∞].

Proof:
$$
\Rightarrow
$$

\n• $\begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} M_r \\ N_r \end{bmatrix} q_1$, and the Bezout equation for P_{22} is $\begin{bmatrix} X_r & -Y_r \end{bmatrix} \begin{bmatrix} M_r \\ N_r \end{bmatrix} = I$.
\nHence $q_1 = \begin{bmatrix} X_r & -Y_r \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} X_r & -Y_r \end{bmatrix} W \begin{bmatrix} d_1 \\ d_2 \end{bmatrix}$.
\n• Similarly $\begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} U_r \\ V_r \end{bmatrix} q_2 + \begin{bmatrix} I & 0 \\ 0 & -I \end{bmatrix} \begin{bmatrix} d_1 \\ d_2 \end{bmatrix}$, and the Bezout equation for K is
\n $\begin{bmatrix} X_r^K & -Y_r^K \end{bmatrix} \begin{bmatrix} U_r \\ V_r \end{bmatrix} = I$.
\nHence $q_2 = \begin{bmatrix} X_r^K & -Y_r^K \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} - \begin{bmatrix} X_r^K & Y_r^K \end{bmatrix} \begin{bmatrix} d_1 \\ d_2 \end{bmatrix}$.
\n• Hence $\begin{bmatrix} q_1 \\ q_2 \end{bmatrix} = \begin{bmatrix} X_r & -Y_r \\ X_r^K & Y_r^K \end{bmatrix} \begin{bmatrix} W - \begin{bmatrix} 0 & 0 \\ X_r^K & Y_r^K \end{bmatrix} \end{bmatrix} \begin{bmatrix} d_1 \\ d_2 \end{bmatrix}$.
\n• Hence $S = \begin{bmatrix} X_r & -Y_r \\ X_r^K & Y_r^K \end{bmatrix} \begin{bmatrix} W - \begin{bmatrix} 0 & 0 \\ X_r^K & Y_r^K \end{bmatrix} \end{bmatrix}$ and so if $W \in RH_\infty$ then $S \in RH_\infty$.

Coprime factorization and internal stability

Notes

- • \bullet The controller K is internally stabilizing if and only if $S = \begin{bmatrix} M_r & -U_r \ -N_r & V_r \end{bmatrix}^{-1}$ [∈] *RH*[∞].
- \bullet Similarly for left coprime factorizations. The controller $K = V_l^{-1} U_l$ is internally stabilizing if and only if $\begin{bmatrix} V_l & -U_l \ -N_l & M_l \end{bmatrix}^{-1}$ [∈] *RH*[∞].

Stabilizing controllers

Suppose doubly coprime factorizations of P_{22} are $P_{22} = N_r M_r^{-1} = M_l^{-1} N_l$ where

$$
\begin{bmatrix} X_r & -Y_r \ -N_l & M_l \end{bmatrix} \begin{bmatrix} M_r & Y_l \ N_r & X_l \end{bmatrix} = I
$$

Given $Q \in RH_{\infty}$, let

$$
U_r = Y_l - M_r Q
$$

\n
$$
V_r = X_l - N_r Q
$$

\n
$$
U_l = Y_r - Q M_l
$$

\n
$$
V_l = X_r - Q N_l
$$

Then if V_r and V_l are invertible in RP ,

$$
U_r V_r^{-1} = V_l^{-1} U_l
$$

are right and left coprime factorizations of ^a stabilizing controller *K*. **Notes:** If $Q = 0$, then internal stability is immediate, since

$$
\begin{bmatrix}\nM_r & -U_r \\
-N_r & V_r\n\end{bmatrix}^{-1} =\n\begin{bmatrix}\n-I & 0 \\
0 & I\n\end{bmatrix}\n\begin{bmatrix}\nM_r & U_r \\
N_r & V_r\n\end{bmatrix}^{-1}\n\begin{bmatrix}\n-I & 0 \\
0 & I\n\end{bmatrix}
$$
\n
$$
=\n\begin{bmatrix}\n-I & 0 \\
0 & I\n\end{bmatrix}\n\begin{bmatrix}\nM_r & Y_l \\
N_r & X_l\n\end{bmatrix}^{-1}\n\begin{bmatrix}\n-I & 0 \\
0 & I\n\end{bmatrix}
$$

which is in *RH*[∞].

Proof

First we prove that $U_r V_r^{-1} = V_l^{-1} U_l$.

• Doubly coprime factorization implies

$$
\begin{bmatrix} X_r & -Y_r \ -N_l & M_l \end{bmatrix} \begin{bmatrix} M_r & Y_l \ N_r & X_l \end{bmatrix} = I
$$

which implies

$$
\begin{bmatrix} I & Q \\ 0 & I \end{bmatrix} \begin{bmatrix} X_r & -Y_r \\ -N_l & M_l \end{bmatrix} \begin{bmatrix} M_r & Y_l \\ N_r & X_l \end{bmatrix} \begin{bmatrix} I & -Q \\ 0 & I \end{bmatrix} = I
$$

• Expanding this gives

$$
\begin{bmatrix} X_r - QN_l & -(Y_r - QM_l) \ N_l & X_l - N_rQ \end{bmatrix} = I
$$

• The (1*,* 2) block of this equation is

$$
(X_r - QN_l)(Y_l - M_rQ) - (Y_r - QM_l)(X_l - N_rQ) = 0
$$

which is

$$
V_l U_r = U_l V_r \qquad \text{which implies} \qquad U_r V_r^{-1} = V_l^{-1} U_l
$$

Proof

Now we prove that *K* is stabilizing.

• As before, doubly coprime factorization implies

$$
\begin{bmatrix} X_r - QN_l & -(Y_r - QM_l) \ N_r & Y_l - M_rQ \ N_r & X_l - N_rQ \end{bmatrix} = I
$$

which is just

$$
\begin{bmatrix}\nV_l & -U_l \\
-N_l & M_l\n\end{bmatrix}\n\begin{bmatrix}\nM_r & U_r \\
N_r & V_r\n\end{bmatrix} = I
$$
\n• Hence\n
$$
S = \begin{bmatrix}\nM_r & -U_r \\
-N_r & V_r\n\end{bmatrix}^{-1} = \begin{bmatrix}\n-I & 0 \\
0 & I\n\end{bmatrix}\n\begin{bmatrix}\nM_r & U_r \\
N_r & V_r\n\end{bmatrix}^{-1}\n\begin{bmatrix}\n-I & 0 \\
0 & I\n\end{bmatrix}
$$
\n
$$
= \begin{bmatrix}\n-I & 0 \\
0 & I\n\end{bmatrix}\n\begin{bmatrix}\nV_l & -U_l \\
-N_l & M_l\n\end{bmatrix}\n\begin{bmatrix}\n-I & 0 \\
0 & I\n\end{bmatrix}
$$

and hence $S \in RH_{\infty}$.

• Finally, to show coprimeness, note that this implies the two Bezout equations

$$
M_l V_r - N_l U_r = I \qquad \text{and} \qquad V_l M_r - U_l N_r = I
$$

which implies U_r , V_r are right coprime and U_l , V_l are left coprime.

Theorem

The controller $K \in RP$ is stabilizing if and only if there exists $Q \in RH_{\infty}$ such that

$$
K = U_r V_r^{-1} \qquad \text{where} \qquad U_r = Y_l - M_r Q
$$

$$
V_r = X_l - N_r Q
$$

Notes

- This result is called the *Youla Parametrization*.
- Every stabilizing controller has the above form.
- We have already proved the *if* direction; all that remains is *only if*.

Proof

- \bullet Suppose K is stabilizing, and let $K=U_rV_r^{-1}$ be a right coprime factorization.
- Doubly coprime factorization implies

$$
\begin{bmatrix} X_r & -Y_r \ -N_l & M_l \end{bmatrix} \begin{bmatrix} M_r & Y_l \ N_r & X_l \end{bmatrix} = I
$$

which implies

$$
\begin{bmatrix} X_r & -Y_r \ -N_l & M_l \end{bmatrix} \begin{bmatrix} M_r & U_r \ N_r & V_r \end{bmatrix} = \begin{bmatrix} I & X_r U_r - Y_r V_r \ 0 & \Theta \end{bmatrix}
$$

where $\Theta = M_l V_r - N_l U_r$. Let $Q = -(X_r U_r - Y_r V_r) \Theta^{-1}$.

• \bullet $\begin{bmatrix} X_r & -Y_r \ -N_l & M_l \end{bmatrix}^{-1}$ = $=\begin{bmatrix} M_r & Y_l \ N_r & X_l \end{bmatrix}$ $\epsilon \in RH_{\infty}$ from the doubly coprime factorization. $\begin{bmatrix} M_r & U_r \ N_r & V_r \end{bmatrix}^{-1}$ [∈] *RH*[∞] since the system is internally stable. Hence ^Θ−¹ [∈] *RH*[∞].

• Hence
$$
\begin{bmatrix} M_r & U_r \ N_r & V_r \end{bmatrix} = \begin{bmatrix} M_r & Y_l \ N_r & X_l \end{bmatrix} \begin{bmatrix} I & X_r U_r - Y_r V_r \ 0 & \Theta \end{bmatrix} = \begin{bmatrix} M_r & (Y_l - M_r Q) \Theta \ N_r & (X_l - N_r Q) \Theta \end{bmatrix}
$$

 \bullet $Q \in RH_{\infty}$, and the controller $K = U_rV_r^{-1} = (Y_l-M_rQ)(X_l-N_rQ)^{-1}$ as required.

LFT form of all stabilizing controllers

We have

$$
(A+BQ)(C+DQ)^{-1} = \underline{S}(M,Q) \qquad \text{where} \qquad M = \begin{bmatrix} AC^{-1} & B-AC^{-1}D \\ C^{-1} & -C^{-1}D \end{bmatrix}
$$

Hence for $K = (Y_l - M_rQ)(X_l - N_rQ)^{-1}$, we have

$$
K = \underline{S}(M, Q) \qquad \text{where} \qquad M = \begin{bmatrix} Y_l X_l^{-1} & -X_r^{-1} \\ X_l^{-1} & X_l^{-1} N_r \end{bmatrix}
$$

where we have used the fact that $Y_l X_l^{-1} = X_r Y_r^{-1}$. Hence every stabilizing controller has the form

The closed-loop system

The closed-loop map $H = \underline{S}(P, K)$ is given by

 $H = T_1 + T_2QT_3$

where

$$
T_1 = P_{11} + P_{12}Y_lM_lP_{21}
$$

\n
$$
T_2 = P_{12}M_r
$$

\n
$$
T_3 = M_lP_{21}
$$

Further, $T_1, T_2, T_3 \in RH_{\infty}$.

14 - 14 Youla parametrization S. Lall, Stanford. 2001.11.20.01

General problem

The general problem is

minimize $||H||$ subject to $H = \underline{S}(P,K)$ for some \hat{K} ∈ *RP* The closed-loop is stable

Equivalent formulation

Once the optimal *Q* is found, then the optimal *K* is given by

 $K = (Y_l - M_rQ)(X_l - N_rQ)^{-1}$