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Engr210a Lecture 15: State-space computations

e Formulae for coprime factorization

e Stabilization via LMIs

e State-space description of stabilizing controllers
e The KYP lemma

e Dissipativity

e Storage functions

e Connections to Lyapunov theory

e The KYP lemma via dissipativity

e The Riccati inequality

e The Riccati equation



15 -2 State-space computations S. Lall, Stanford. 2001.11.23.02

Formulae for coprime factorization

Suppose we have the state-space system GG
t(t) = Ax(t) + Bu(t)  x(t) =0
y(t) = Cx(t) + Dult)

Choose F' such that A + BF' is Hurwitz, and L such that A + LC' is Hurwitz. Then the
a doubly coprime factorization is given by

A+ BF|B —L
[Mr Yz]: FoT 0
e A C+DF|D I |
A+ LC|—B—LD L |
[Xf _Y;“]: F I 0
—Ne M, C D I

Proof

One can prove this by direct multiplication.
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Stabilization via LMls
If () > 0, then a matrix A is Hurwitz if and only if the solution to
AX + XA +Q =0

satisfies X > 0.
Equivalently, A is Hurwitz if and only if there exists X > 0 such that

AX + X A" <0

To find F' such that A + BF' is Hurwitz, first note that
A+ BF is Hurwitz = 31X >0;, (A+ BF)X+X(A+BF)" <0

This is not an LMl in F' and X, since the product F'.X appears. Substitute 7 = F'X,
then we have the following.

Theorem

There exists F' such that A + BF' is Hurwitz if and only if there exists X > 0 and Z
such that
AX+ XA +BZ+72°B" <0

Then one such Fis F = ZX 1.
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State-space description of stabilizing controllers

Suppose (A, By) is stabilizable and (A, C5) is detectable. Let F' and L be matrices such
that A + ByF and A + LC5 are Hurwitz. Then

. [A+B2F+LCQ+LD22F—L]
k= F 0

is a stabilizing controller.
Proof

The dynamics of the interconnected system are <t> = Aq z(t) where
(1) xﬂﬂ

A A 0 n By 0 I —Dg| |0 Cg
10 Ag 0 Bg||-Dxn I Cy 0
Substituting the controller parameters from above gives

A A ByF _{F1A+L@ 0 -
I N—LCy A+ LCy+ ByF| — —LCy A+ ByF

I —1I

for ' = [0 7

] . Hence the eigenvalues of A are those of A + Byl and A + L.
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The Kalman-Yakubovich-Popov Lemma

Suppose we have the state-space system GG
t(t) = Ax(t) + Bu(t)  x(t) =0
y(t) = Cx(t) + Du(t)
Then the following are equivalent
e ||G]| <1 and A is Hurwitz

e There exists X € R™"™ with X = X™* and X > 0 such that

[A*X + XA XB] N [C*

BX I D*] C D] <0

Notes

e Also called the Bounded Real Lemma.

e The above condition is an LMI in X; solvable by semidefinite programming.

e The (1,1) block is A*X + XA+ C*C < 0 is a Lyapunov inequality. Existence of
X > 0 satisfying this LMI implies A is Hurwitz.

e The (2,2) block is D*D < I; necessary for |G| < 1.
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Dissipativity
Suppose we have the nonlinear system
z(t) = f(x(t), u(t))
y(t) = gla(t), u(t))
where x(t) € R", u(t) € R™, y(t) € RP.
Suppose we have a function

s R"xRF - R

(u(t), y(t)) = s(ult), y(t))

We call s the supply rate function.

S. Lall, Stanford. 2001.11.23.02
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Dissipativity
The system is called dissipative if there exists a function V' : R" — R such that

e V(z)>0forall zeR"

(z(t),u(t))  2(0) = 2

for every t1 > 0.

Note: We need smoothness conditions on u, f, g to make this precise.
Dissipation inequality

If V' and z are sufficiently smooth, this is equivalent to

Ly (a(t) < —s(ult). y(t)

where u, y, x are related by the dynamics of the system.
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Interpretation of dissipativity

%V(aj(t)) < —s(u(t),y(t))

e |/ is the amount of substance or energy in the system

o s(u(t),y(t)) is the rate at which substance or energy is obtained from the system.

Examples

e Electrical systems: wu(t) is a vector of voltages, 3(t) is a vector of currents, and the
supply function is s(u(t), y(t)) = —u(t)*y(t).

e Mechanical systems: wu(t) is a vector of forces, y(t) is a vector of velocities, and the
supply function is s(u(t), y(t)) = —u(t)*y(t).
Dissipation inequality

e The dissipation inequality can be written
oV (x,u)
Ox

flz,u)+s(u,g(z,u)) <0 forallz e R",ueR"

e (Called Hamilton-Jacobi equation or Bellman equation.
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Connection to Lyapunov theory

Suppose f(0,0) =0 and s(0, g(z,0)) > 0 for all z € R". Then the dissipation inequality
implies

oV (z,0)
ox

f(x,0) <0  forallz e R"

Lyapunov functions

Recall that if V' : R" — R is a continuously differentiable function such that

(i) V(0)=0

(i) V(z)>0forx #0

o d — OV
(iii) EV@?) =2 (%:ZfZ(x) < 0 for x # 0.
(iv) If {xg,x1,...} is a sequence such that ||x|| — oo, then V(z}) — o0.

So, provided V satisfies condition (iv), the origin x = 0 is globally asymptotically stable
with zero input. That is, for any initial condition

lim z(t) =0

t—00
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Theorem

The system is dissipative if and only if for every z(, there exists ¢ > 0 such that
t1
/ s(u(t),y(t)) dt <c  forallt; > 0 and all u.
0

where x(0) = zy, and x, y are functions of zj, u determined by the system dynamics.
Proof
(only if:) If the system is dissipative, then

Viz1) — Vi(z) < — /Otl s(u(t),y(t))dt  forall t; >0 and all w.

where 2(0) = zy, and =,y and 2; = x(t1) are functions of 2(, u determined by the system
dynamics.

This implies that for any 25 € R",

t1
/ s(u(t),y(t)) dt < V(z) for all t; > 0 and all u.
0
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Proof (if)

t1
e We will show that if/ s(u(t),y(t)) dt < cforall ty > 0 and all u, then the system
0

is dissipative.

o Let V(z2) = sup{/oTs(u(t),y(t» dt ; t; > 0,uon [0,t1],z(0) = z}

where x, y are functions of z, u determined by the system dynamics.

e Clearly V(z) >0 for all z € R".

o V(zy) > sup /Ot2 s(u(t),y(t)) dt  forall t, >0

u| [O,tQ]

= sup {/Otl s(u(t),y(t)) dt + sup /j2 s(ult), y(t)) dt} for all t5 >0

u|[0,t1] u'[tl,tz} 1

e Hence V(z)) > /tl s(u(t),y(t)) dt +V(z)  forall uon [0,].

e This approach is known as the Bellman principle or dynamic programming.
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The induced-norm via dissipativity

Consider the linear system G

©(t) = Ax(t) + Bu(t)  x(t) =0
y(t) = Cx(t) + Du(t)

Pick supply function as the quadratic function

)= [20) [ 9] [e]

Then
/Ooos(u@),y(t)) dt:/()oo(y@)*y(t)_u(t)*u<t)) p
— Iyl = [l
Recall that
el <1 WP <l forallue Lujo, o)

<
= yl]* — JJul* <0 for all u € L]0, 00)
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Theorem

The system satisfies |G| < 1, where G is the map u — y with initial condition x(0) = 0,
if and only if for every 2, there exists ¢ > 0 such that

ty
/ s(u(t),y(t)) dt <c  forall t; > 0 and all u.
0

where x(0) = zy, and x, y are functions of zy, u determined by the system dynamics, and
s is the above defined quadratic storage function.

Notes

e With this s, the system is dissipative if and only if ||G]| < 1.

Proof «——

Suppose ||G|| > 1. Then there exists ug such that ||Gugl|* > ||ug||* with z(0) = 0.

That is, there exists ¢ > 0 such that ||Gug||* — ||ug||* > ¢. By scaling ug, we can make
|Gug||* — ||uol|* arbitrarily large.
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Proof —

e \We wish to show that for every 2, there exists ¢ > 0 such that

t1
/ s(u(t),y(t)) dt <c  forall t; > 0 and all u.
0

where 2(0) = 2, and x, y are functions of z;, u determined by the system dynamics.
e Suppose |G| < 1. Then when z(0) = 0,

lyll* = |lul]* <0 forall u € Ly[0, c0)

e Hence, for any zj, when x(0) = z; we have

Iyl = lull® < [lyseell®  for all u € Ly[0, 00)

where Yqee(t) = Cet'2. Hence

/ s(u(t), y(t)) dt < ||ymeel|”  for all u € Ls[0, 00)
0

t1
e Suppose there exists t; such that / s(u(t),y(t)) dt can be made arbitrarily large.

0
Then we can set u(t) = 0 on t > t1, and contradict the above statement.
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Linear systems and dissipativity

Consider the linear system G
©(t) = Ax(t) + Bu(t)  x(t) =0
y(t) = Cx(t) + Du(t)

u(t)r [Pll P12] [u(t)]
y(t)] [Py P |y(t)
For dissipative LTI systems with quadratic supply functions, we can always find quadratic
storage functions, V(x) = x* X x. The dissipation inequality is then
oV (x,u)
ox
which holds if and only if

Pick supply function as the quadratic function s(u(t), y(t)): [

flz,u)+s(u,g(z,u))<0  forallz € R",u e R”

. . ul™ [Py Pl [u
(Az + Bu)"Xx + 2" X (Ax + Bu) + u [Pf‘z P22] [ ] <0

holds for all x € R", u € R™.
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The induced-norm and the dissipation inequality

The system is dissipative if and only if, for all x € R", u € R"™,

. x ul” [Py Pyl [u
(Az + Bu)* Xz + 2" X (Ax + Bu) + [y] [Pf} P22] [y] <0

which holds if and only if, for all z € R",u € R"™,
1" ([ XA XB N A*X 0 [0 I [Py Pol [0 I x*<0
U 0 0 B*X 0 C D Pl Pyl |C D wl| —
which holds if and only if

A*X + XA XB N 0 I1" [Py Ppl [0 I
B*X 0 C D| |Pj, Pyl |C D

-7 0
0 I

[A*)é:;(XA XOB] _ m 0 I+ [g] [C D] <0

This is the KYP LMI. Note X > 0 if V' is a storage function.

< 0

For the induced-norm, we need P = [ ] which gives
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Riccati inequality

We have ||G|| < 1 if and only if there exists X € R™", with X = X* and X > 0 such

that
A* X+ XA XB C*
[ Y _]]+[D*] C D] <0

This is equivalent to

A X+ XA+C*C XB+C*D <0
B*X + D*C —I +D*D

Taking the Schur complement, this holds if and only if
AX+XA+C*C+(XB+C*D)I —D*D) ' (B*X + D*C) < 0
and DD —1<0

This is called a Riccati inequality.
When D = 0, it becomes

A X+ XA+CC+XBB*X <0
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Riccati equation

The KYP lemma may also be stated as the following. The norm ||G|| < 1 if and only if
|D|| < 1 and there exists X = X*, such that

AX+XA+CC+(XB+C*D)I—-D*D) Y (B*X +D*C) =0
where A+ B(I — D*D)(B*X + D*C) is Hurwitz.
Notes
e This is the Riccati equation form.

e When such an X exists, it satisfies X > 0.



