Engr210a Lecture 16: H_{∞} synthesis

- State-feedback problem
- KYP formulation
- Change of variables
- Synthesis theorem
- General problem formulation
- Change of variables
- Synthesis theorem
- Formal correspondence
- The H_2 problem

Problem formulation

We have the following interconnection

and would like to find K to solve

minimize $\|\underline{S}(P, K)\|$ subject to The closed-loop is stable

State feedback problem

We are given the plant P $\dot{x}(t) = Ax(t) + B_1w(t) + B_2u(t)$ $z(t) = C_1x(t) + D_{11}w(t) + D_{12}u(t)$

Controller

Find a controller K of the form

 $u(t) = D_K x(t)$

Closed-loop equations

We are given the plant P

$$
\dot{x}(t) = Ax(t) + B_1 w(t) + B_2 u(t) \n z(t) = C_1 x(t) + D_{11} w(t) + D_{12} u(t)
$$

and controller $u = D_K x$.

The closed-loop map from w to z is

$$
\dot{x}_{cl}(t) = A_{cl}x_{cl}(t) + B_{cl}w(t)
$$

$$
z(t) = C_{cl}x(t) + D_{cl}w(t)
$$

where

$$
A_{cl} = A + B_2 D_K
$$

\n
$$
C_{cl} = C_1 + D_{12} D_K
$$

\n
$$
D_{cl} = D_{11}
$$

\n
$$
D_{cl} = D_{11}
$$

Convenient form

Closed-loop parameters are affine in controller parameters:

$$
\begin{bmatrix} A_{cl} & B_{cl} \\ C_{cl} & D_{cl} \end{bmatrix} = \begin{bmatrix} A & B_1 \\ C_1 & D_{11} \end{bmatrix} + \begin{bmatrix} 0 & B_2 \\ 0 & D_{12} \end{bmatrix} \begin{bmatrix} 0 \\ D_K \end{bmatrix}
$$

The KYP lemma

The following are equivalent

- $||G|| < 1$ and A is Hurwitz.
- There exists $X \in \mathbb{R}^{n \times n}$ such that

$$
X > 0 \qquad \text{and} \qquad \begin{bmatrix} A^*X + XA & XB \\ B^*X & -I \end{bmatrix} + \begin{bmatrix} C^* \\ D^* \end{bmatrix} \begin{bmatrix} C & D \end{bmatrix} < 0
$$

Schur complement

Applying the Schur complement gives the equivalent statement

• There exists $X \in \mathbb{R}^{n \times n}$ such that

$$
X > 0 \qquad \text{and} \qquad \begin{bmatrix} A^*X + XA & XB & C^* \\ B^*X & -I & D^* \\ C & D & -I \end{bmatrix} < 0
$$

The KYP Lemma

The following are equivalent

- $||S(P, K)|| < 1$ and A_{cl} is Hurwitz.
- There exists $X_{cl} \in \mathbb{R}^{n \times n}$ such that

$$
X_{cl} > 0 \qquad \text{and} \qquad \begin{bmatrix} A_{cl}^* X_{cl} + X_{cl} A_{cl} & X_{cl} B_{cl} \\ B_{cl}^* X_{cl} & -I \end{bmatrix} + \begin{bmatrix} C_{cl}^* \\ D_{cl}^* \end{bmatrix} \begin{bmatrix} C_{cl} & D_{cl} \end{bmatrix} < 0
$$

Schur complement

Applying the Schur complement gives the equivalent statement

• There exists $X_{cl} \in \mathbb{R}^{n \times n}$ such that

$$
X_{cl} > 0 \qquad \text{and} \qquad \begin{bmatrix} A_{cl}^* X_{cl} + X_{cl} A_{cl} & X_{cl} B_{cl} & C_{cl}^* \\ B_{cl}^* X_{cl} & -I & D_{cl}^* \\ C_{cl} & D_{cl} & -I \end{bmatrix} < 0
$$

Convexity

We would like to find D_K such that

there exists
$$
X_{cl} > 0
$$
 such that
$$
\begin{bmatrix} A_{cl}^* X_{cl} + X_{cl} A_{cl} & X_{cl} B_{cl} & C_{cl}^* \\ B_{cl}^* X_{cl} & -I & D_{cl}^* \\ C_{cl} & D_{cl} & -I \end{bmatrix} < 0
$$

We know
$$
\begin{bmatrix} A_{cl} & B_{cl} \\ C_{cl} & D_{cl} \end{bmatrix} = \begin{bmatrix} A & B_1 \\ C_1 & D_{11} \end{bmatrix} + \begin{bmatrix} 0 & B_2 \\ 0 & D_{12} \end{bmatrix} \begin{bmatrix} 0 \\ D_K \end{bmatrix}.
$$

Hence the above conditions are

$$
X_{cl} > 0 \qquad \text{and} \qquad \begin{bmatrix} (A+B_2D_K)^*X_{cl} + X_{cl}(A+B_2D_K) & XB_1 & C_1 + D_{12}D_K \\ B_1^*X & -I & D_{11} \\ C_1^* + D_K^*D_{12}^* & D_{11}^* & -I \end{bmatrix} < 0
$$

- If we know X_{cl} , then above inequality is affine in D_K . Hence it is an LMI and we can find the controller.
- If we know the controller parameter D_K , then the inequality is affine in X_{cl} , and we can compute the closed-loop norm.
- Both at once?

Transformation

Let
$$
Y_{cl} = \left(X_{cl}^{-1}\right)^*
$$
 and $C_n = D_K Y_{cl}$.

Define

The following is an affine function of C_n and Y_{cl} .

$$
\begin{bmatrix} A_v & B_v \ C_v & D_v \end{bmatrix} = \begin{bmatrix} AY_{cl} & B_1 \ C_1Y_{cl} & D_{11} \end{bmatrix} + \begin{bmatrix} 0 & B_2 \ 0 & D_{12} \end{bmatrix} \begin{bmatrix} 0 \ C_n \end{bmatrix}
$$

Lemma

The following will be useful in transforming the KYP lemma

$$
\begin{bmatrix} A_v & B_v \ C_v & D_v \end{bmatrix} = \begin{bmatrix} Y_{cl}^* & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} X_{cl} A_{cl} & X_{cl} B_{cl} \\ C_{cl} & D_{cl} \end{bmatrix} \begin{bmatrix} Y_{cl} & 0 \\ 0 & I \end{bmatrix}
$$

Proof

Substitute

$$
\begin{bmatrix} A_{cl} & B_{cl} \\ C_{cl} & D_{cl} \end{bmatrix} = \begin{bmatrix} A & B_1 \\ C_1 & D_{11} \end{bmatrix} + \begin{bmatrix} 0 & B_2 \\ 0 & D_{12} \end{bmatrix} \begin{bmatrix} 0 \\ D_K \end{bmatrix}
$$

Synthesis theorem

The following are equivalent

- There exists a stabilizing state-feedback controller such that $\|S(P, K)\| < 1$
- There exists $Y_{cl} > 0$ and C_n such that

$$
\begin{bmatrix} A_v^* + A_v & B_v & C_v^* \\ B_v^* & -I & D_v^* \\ C_v & D_v & -I \end{bmatrix} < 0
$$

- \bullet Recall $\begin{bmatrix} A_v & B_v \ C & D \end{bmatrix}$ C_v D_v $\overline{}$ = $\begin{bmatrix} A Y_{cl} & B_1 \ C_1 Y_{cl} & D_{11} \end{bmatrix}$ $+$ $\begin{bmatrix} 0 & B_2 \ 0 & D_{12} \end{bmatrix} \begin{bmatrix} 0 \\ C_n \end{bmatrix}$ 1
- This is affine in Y_{cl} and C_n .
- Hence the above inequalities are LMIs in these variables.
- Once we have found Y_{cl} and C_n , we can find D_K from the formula

$$
D_K = C_n Y_{cl}^{-1}
$$

Proof

• A stabilizing controller which achieves $\|\underline{S}(P, K)\| < 1$ exists iff

there exists $X_{cl} > 0$ such that

$$
\begin{bmatrix}\nA_{cl}^* X_{cl} + X_{cl} A_{cl} & X_{cl} B_{cl} & C_{cl}^* \\
B_{cl}^* X_{cl} & -I & D_{cl}^* \\
C_{cl} & D_{cl} & -I\n\end{bmatrix} < 0
$$

• This is equivalent to

there exists
$$
Y_{cl} > 0
$$
 s.t.
$$
\begin{bmatrix} Y_{cl}^* & 0 & 0 \\ 0 & I & 0 \\ 0 & 0 & I \end{bmatrix} \begin{bmatrix} A_{cl}^* X_{cl} + X_{cl} A_{cl} & X_{cl} B_{cl} & C_{cl}^* \\ B_{cl}^* X_{cl} & -I & D_{cl}^* \\ C_{cl} & D_{cl} & -I \end{bmatrix} \begin{bmatrix} Y_{cl} & 0 & 0 \\ 0 & I & 0 \\ 0 & 0 & I \end{bmatrix} < 0
$$

Note invertibility of $Y_{cl} = \left(X_{cl}^{-1}\right)^*.$

• This inequality is equivalent to

$$
\begin{bmatrix} A_v^* + A_v & B_v & C_v^* \\ B_v^* & -I & D_v^* \\ C_v & D_v & -I \end{bmatrix} < 0
$$

where we have used

$$
\begin{bmatrix} A_v & B_v \ C_v & D_v \end{bmatrix} = \begin{bmatrix} Y_{cl}^* & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} X_{cl} A_{cl} & X_{cl} B_{cl} \\ C_{cl} & D_{cl} \end{bmatrix} \begin{bmatrix} Y_{cl} & 0 \\ 0 & I \end{bmatrix}
$$

Problem formulation

We have the following interconnection

and would like to find K to solve

minimize $\|\underline{S}(P, K)\|$ subject to The closed-loop is stable

State-space

We are given the plant P

$$
P = \begin{bmatrix} P_{11} & P_{12} \\ P_{21} & P_{22} \end{bmatrix}
$$

which is not necessarily stable.

In state-space

$$
\dot{x}(t) = Ax(t) + B_1 w(t) + B_2 u(t)
$$

\n
$$
z(t) = C_1 x(t) + D_{11} w(t) + D_{12} u(t)
$$

\n
$$
y(t) = C_2 x(t) + D_{21} w(t) + D_{22} u(t)
$$

Controller

Find a controller K of the form

$$
\dot{x}_K(t) = A_K x(t) + B_K y(t)
$$

$$
u(t) = C_K x(t) + D_K y(t)
$$

Controller order

- We start by assuming the controller has order $n_K \geq n$.
- We will find that any performance achievable by a controller of order $n_K > n$ is also achievable by one of order n .

Assumption

• Direct feedthrough terms: Assume that $D_{22} = 0$; if $D_{22} \neq 0$ the same approach works with a simple change of variables.

Closed-loop equations

The closed-loop map from w to z is

$$
\dot{x}_{cl}(t) = A_{cl}x_{cl}(t) + B_{cl}w(t)
$$

$$
z(t) = C_{cl}x(t) + D_{cl}w(t)
$$

Closed-loop parameters are affine in controller parameters:

$$
\begin{bmatrix} A_{cl} & B_{cl} \\ C_{cl} & D_{cl} \end{bmatrix} = \begin{bmatrix} A & 0 & B_1 \\ 0 & 0 & 0 \\ C_1 & 0 & D_{11} \end{bmatrix} + \begin{bmatrix} 0 & B_2 \\ I & 0 \\ 0 & D_{12} \end{bmatrix} \begin{bmatrix} A_K & B_K \\ C_K & D_K \end{bmatrix} \begin{bmatrix} 0 & I & 0 \\ C_2 & 0 & D_{21} \end{bmatrix}
$$

The KYP Lemma

The following are equivalent

- $||S(P, K)|| < 1$ and A_{cl} is Hurwitz.
- There exists $X_{cl} \in \mathbb{R}^{(n+n_K) \times (n+n_K)}$ such that

$$
X_{cl} > 0 \qquad \text{and} \qquad \begin{bmatrix} A_{cl}^* X_{cl} + X_{cl} A_{cl} & X_{cl} B_{cl} \\ B_{cl}^* X_{cl} & -I \end{bmatrix} + \begin{bmatrix} C_{cl}^* \\ D_{cl}^* \end{bmatrix} \begin{bmatrix} C_{cl} & D_{cl} \end{bmatrix} < 0
$$

Schur complement

Applying the Schur complement gives the equivalent statement

• There exists $X_{cl} \in \mathbb{R}^{(n+n_K) \times (n+n_K)}$ such that

$$
X_{cl} > 0 \qquad \text{and} \qquad \begin{bmatrix} A_{cl}^* X_{cl} + X_{cl} A_{cl} & X_{cl} B_{cl} & C_{cl}^* \\ B_{cl}^* X_{cl} & -I & D_{cl}^* \\ C_{cl} & D_{cl} & -I \end{bmatrix} < 0
$$

Convexity

We would like to find A_K, B_K, C_K, D_K such that

$$
\text{there exists } X_{cl} > 0 \text{ such that } \begin{bmatrix} A_{cl}^* X_{cl} + X_{cl} A_{cl} & X_{cl} B_{cl} & C_{cl}^* \\ B_{cl}^* X_{cl} & -I & D_{cl}^* \\ C_{cl} & D_{cl} & -I \end{bmatrix} < 0
$$

We know

$$
\begin{bmatrix} A_{cl} & B_{cl} \\ C_{cl} & D_{cl} \end{bmatrix} = \begin{bmatrix} A & 0 & B_1 \\ 0 & 0 & 0 \\ C_1 & 0 & D_{11} \end{bmatrix} + \begin{bmatrix} 0 & B_2 \\ I & 0 \\ 0 & D_{12} \end{bmatrix} \begin{bmatrix} A_K & B_K \\ C_K & D_K \end{bmatrix} \begin{bmatrix} 0 & I & 0 \\ C_2 & 0 & D_{21} \end{bmatrix}
$$

- If we know X_{cl} , then above inequality is affine in A_K, B_K, C_K, D_K , hence it is an LMI and we can find the controller.
- If we know the controller A_K, B_K, C_K, D_K , then the inequality is affine in X_{cl} , and we can compute the closed-loop norm.
- Both at once?

Transformation formulae

Given X_{cl} and A_K, B_K, C_K, D_K define the following new variables

• Define X, X_2 and Y, Y_2 by

$$
X_{cl} = \begin{bmatrix} X & X_2 \\ X_2^* & X_3 \end{bmatrix} \qquad X_{cl}^{-1} = \begin{bmatrix} Y & Y_2 \\ Y_2^* & Y_3 \end{bmatrix}
$$

\n- Define
$$
A_n, B_n, C_n, D_n
$$
 by\n
$$
\begin{bmatrix}\n A_n & B_n \\
 C_n & D_n\n \end{bmatrix}\n =\n \begin{bmatrix}\n X_2 & XB_2 \\
 0 & I\n \end{bmatrix}\n \begin{bmatrix}\n A_K & B_K \\
 C_K & D_K\n \end{bmatrix}\n \begin{bmatrix}\n Y_2^* & 0 \\
 C_2 Y & I\n \end{bmatrix}\n +\n \begin{bmatrix}\n XAY & 0 \\
 0 & 0\n \end{bmatrix}
$$
\n
\n- Define Y_{cl} by\n
$$
\begin{bmatrix}\n Y & I\n \end{bmatrix}
$$
\n
\n

$$
Y_{cl} = \begin{bmatrix} Y & I \\ Y_2^* & 0 \end{bmatrix}
$$

- $X_{cl} > 0$ implies $X > 0$ and $Y > 0$.
- Dimensions: $X, Y \in \mathbb{R}^{n \times n}$, $X_2, Y_2 \in \mathbb{R}^{n \times n}$ and $Y_{cl} \in \mathbb{R}^{(n+n_K) \times 2n}$.
- We will write the KYP LMI for the closed-loop in terms of X, Y, A_n, B_n, C_n, D_n .

Transformation lemma

Given
$$
X, Y \in \mathbb{R}^{n \times n}
$$
 such that $\begin{bmatrix} Y & I \\ I & X \end{bmatrix} > 0$, then
\n• There exist $X_2, X_3, Y_2, Y_3 \in \mathbb{R}^{n \times n}$ such that $\begin{bmatrix} X & X_2 \\ X_2^* & X_3 \end{bmatrix}^{-1} = \begin{bmatrix} Y & Y_2 \\ Y_2^* & Y_3 \end{bmatrix}$

• Let X_{cl} and Y_{cl} be as above. Then $X_{cl} > 0$ and Y_{cl} has full column rank.

Proof

- Since $\begin{bmatrix} Y & I \\ I & X \end{bmatrix}$ > 0 , we have $I - XY$ is nonsingular.
- We need to find X_2 and Y_2 such that

$$
X_2 Y_2^* = I - XY
$$

Here X_2 and Y_2 can be chosen square and nonsingular. (e.g. choose $Y_2 = I$.)

• Then X_{cl} is uniquely determined, since

$$
\begin{bmatrix} Y & Y_2 \\ I & 0 \end{bmatrix} \begin{bmatrix} X & X_2 \\ X_2^* & X_3 \end{bmatrix} = \begin{bmatrix} I & 0 \\ X & X_2 \end{bmatrix} \implies X_{cl} = \begin{bmatrix} Y & Y_2 \\ I & 0 \end{bmatrix}^{-1} \begin{bmatrix} I & 0 \\ X & X_2 \end{bmatrix}
$$

• Y_{cl} has full column rank, since Y_2 is nonsingular, and $Y_{cl} = \begin{bmatrix} Y & I \\ Y_2^* & 0 \end{bmatrix}$

Converse transformation lemma

Given $X_{cl} > 0$ such that X_2 has full row rank. Then

- $\begin{bmatrix} Y & I \\ I & X \end{bmatrix}$ > 0
- Y_{cl} has full column rank.

Proof

- Clearly $\begin{bmatrix} I & 0 \\ V & V \end{bmatrix}$ X X_2 $\overline{}$ has full row rank.
- \bullet Note that $\begin{bmatrix} Y & Y_2 \ Y & 0 \end{bmatrix}$ I 0 $\begin{bmatrix} X & X_2 \end{bmatrix}$ X_2^* X_3^* $\overline{}$ = $\begin{bmatrix} I & 0 \end{bmatrix}$ X X_2 1 and hence $Y_{cl} =$ $\begin{bmatrix} Y & I \end{bmatrix}$ Y_2^* $\frac{7}{2}$ ^{*} 0 $\overline{}$ = $\begin{bmatrix} I & X^* \end{bmatrix}$ $0 \; X_2^*$ $\overline{}$ X_{cl}^{-1} cl

has full column rank.

• $\begin{bmatrix} Y & I \\ I & X \end{bmatrix}$ $= Y_{cl}^* X_{cl} Y_{cl}$, which is positive definite since Y_{cl} has full column rank.

Definitions

$$
\begin{bmatrix}\nA_v & B_v \\
C_v & D_v\n\end{bmatrix} =\n\begin{bmatrix}\nAY & A & B_1 \\
0 & XA & XB_1 \\
C_1Y & C_1 & D_{11}\n\end{bmatrix} +\n\begin{bmatrix}\n0 & B_2 \\
I & 0 \\
0 & D_{12}\n\end{bmatrix}\n\begin{bmatrix}\nA_n & B_n \\
C_n & D_n\n\end{bmatrix}\n\begin{bmatrix}\nI & 0 & 0 \\
0 & C_2 & D_{21}\n\end{bmatrix}
$$
\n
$$
X_v =\n\begin{bmatrix}\nY & I \\
I & X\n\end{bmatrix}
$$

Lemma

$$
\begin{bmatrix} A_v & B_v \ C_v & D_v \end{bmatrix} = \begin{bmatrix} Y_{cl}^* & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} X_{cl} A_{cl} & X_{cl} B_{cl} \\ C_{cl} & D_{cl} \end{bmatrix} \begin{bmatrix} Y_{cl} & 0 \\ 0 & I \end{bmatrix} \quad \text{and} \quad X_v = Y_{cl}^* X_{cl} Y_{cl}
$$

Proof: Use the following previous definitions

•
$$
Y_{cl} = \begin{bmatrix} Y & I \\ Y_2 & 0 \end{bmatrix}
$$

\n• $\begin{bmatrix} A_{cl} & B_{cl} \\ C_{cl} & D_{cl} \end{bmatrix} = \begin{bmatrix} A & 0 & B_1 \\ 0 & 0 & 0 \\ C_1 & 0 & D_{11} \end{bmatrix} + \begin{bmatrix} 0 & B_2 \\ I & 0 \\ 0 & D_{12} \end{bmatrix} \begin{bmatrix} A_K & B_K \\ C_K & D_K \end{bmatrix} \begin{bmatrix} 0 & I & 0 \\ C_2 & 0 & D_{21} \end{bmatrix}$
\n• $\begin{bmatrix} A_n & B_n \\ C_n & D_n \end{bmatrix} = \begin{bmatrix} X_2 & XB_2 \\ 0 & I \end{bmatrix} \begin{bmatrix} A_K & B_K \\ C_K & D_K \end{bmatrix} \begin{bmatrix} Y_2^* & 0 \\ C_2 Y & I \end{bmatrix} + \begin{bmatrix} XAY & 0 \\ 0 & 0 \end{bmatrix}$

Theorem

There exists a stabilizing controller K such that

 $\|S(P, K)\| < 1$

if and only if there exists X, Y, A_n, B_n, C_n, D_n satisfying the LMIs

$$
X_v > 0 \quad \text{and} \quad \begin{bmatrix} A_v^* + A_v & B_v & C_v^* \\ B_v^* & -I & D_v^* \\ C_v & D_v & -I \end{bmatrix} < 0
$$

Notes

- The above inequality is affine, and hence an LMI, in X, Y, A_n, B_n, C_n, D_n .
- Once we have found X, Y, A_n, B_n, C_n, D_n , we can find X_2 , Y_2 from

$$
X_2 Y_2^* = I - XY
$$

and hence find the controller using

$$
\begin{bmatrix} A_K & B_K \ C_K & D_K \end{bmatrix} = \begin{bmatrix} X_2 & X B_2 \ 0 & I \end{bmatrix}^{-1} \left(\begin{bmatrix} A_n & B_n \ C_n & D_n \end{bmatrix} - \begin{bmatrix} X A Y & 0 \ 0 & 0 \end{bmatrix} \right) \begin{bmatrix} Y_2^* & 0 \ C_2 Y & I \end{bmatrix}^{-1}
$$

 $\bullet\;$ We can always find a controller of dimension $n,$ since X_2 can be chosen to be $n\times n.$

Proof (only if)

Suppose there exists X_{cl} and A_K, B_K, C_K, D_K satisfying

$$
X_{cl} > 0 \qquad \text{and} \qquad \begin{bmatrix} A_{cl}^* X_{cl} + X_{cl} A_{cl} & X_{cl} B_{cl} & C_{cl}^* \\ B_{cl}^* X_{cl} & -I & D_{cl}^* \\ C_{cl} & D_{cl} & -I \end{bmatrix} < 0
$$

then since the set of such X_{cl} is open, we can perturb X_{cl} so that $X_{cl}\,=\,$ $\begin{bmatrix} X & X_2 \end{bmatrix}$ X_2^* X_3 1 satisfies the above inequalities with X_2 having full row rank.

Then according to the converse transformation lemma, Y_{cl} has full column rank, and hence

$$
Y_{cl}^* X_{cl} Y_{cl} > 0 \quad \text{and} \quad \begin{bmatrix} Y_{cl}^* & 0 & 0 \\ 0 & I & 0 \\ 0 & 0 & I \end{bmatrix} \begin{bmatrix} A_{cl}^* X_{cl} + X_{cl} A_{cl} & X_{cl} B_{cl} & C_{cl}^* \\ B_{cl}^* X_{cl} & -I & D_{cl}^* \\ C_{cl} & D_{cl} & -I \end{bmatrix} \begin{bmatrix} Y_{cl} & 0 & 0 \\ 0 & I & 0 \\ 0 & 0 & I \end{bmatrix} < 0
$$

These inequalities are

$$
X_v > 0 \quad \text{and} \quad \begin{bmatrix} A_v^* + A_v & B_v & C_v^* \\ B_v^* & -I & D_v^* \\ C_v & D_v & -I \end{bmatrix} < 0
$$
\n
$$
\text{since we know } \begin{bmatrix} A_v & B_v \\ C_v & D_v \end{bmatrix} = \begin{bmatrix} Y_{cl}^* & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} X_{cl} A_{cl} & X_{cl} B \\ C_{cl} & D_{cl} \end{bmatrix} \begin{bmatrix} Y_{cl} & 0 \\ 0 & I \end{bmatrix}.
$$

Proof (if)

Suppose there exist X and Y such that

$$
X_v > 0 \quad \text{and} \quad \begin{bmatrix} A_v^* + A_v & B_v & C_v^* \\ B_v^* & -I & D_v^* \\ C_v & D_v & -I \end{bmatrix} < 0
$$

Then, from the transformation lemma, we can construct $X_{cl} > 0$ and Y_{cl} with full row rank which satisfy

$$
Y_{cl}^* X_{cl} Y_{cl} > 0 \quad \text{and} \quad \begin{bmatrix} Y_{cl}^* & 0 & 0 \\ 0 & I & 0 \\ 0 & 0 & I \end{bmatrix} \begin{bmatrix} A_{cl}^* X_{cl} + X_{cl} A_{cl} & X_{cl} B_{cl} & C_{cl}^* \\ B_{cl}^* X_{cl} & -I & D_{cl}^* \\ C_{cl} & D_{cl} & -I \end{bmatrix} \begin{bmatrix} Y_{cl} & 0 & 0 \\ 0 & I & 0 \\ 0 & 0 & I \end{bmatrix} < 0
$$

hence

$$
X_{cl} > 0 \qquad \text{and} \qquad \begin{bmatrix} A_{cl}^* X_{cl} + X_{cl} A_{cl} & X_{cl} B_{cl} & C_{cl}^* \\ B_{cl}^* X_{cl} & -I & D_{cl}^* \\ C_{cl} & D_{cl} & -I \end{bmatrix} < 0
$$

for A_K, B_K, C_K, D_K defined by

$$
\begin{bmatrix} A_K & B_K \ C_K & D_K \end{bmatrix} = \begin{bmatrix} X_2 & X B_2 \ 0 & I \end{bmatrix}^{-1} \left(\begin{bmatrix} A_n & B_n \ C_n & D_n \end{bmatrix} - \begin{bmatrix} X A Y & 0 \ 0 & 0 \end{bmatrix} \right) \begin{bmatrix} Y_2^* & 0 \ C_2 Y & I \end{bmatrix}^{-1}
$$

Formal correspondence

Compare the KYP LMIs

$$
X_{cl} > 0 \qquad \text{and} \qquad \begin{bmatrix} A_{cl}^* X_{cl} + X_{cl} A_{cl} & X_{cl} B_{cl} & C_{cl}^* \\ B_{cl}^* X_{cl} & -I & D_{cl}^* \\ C_{cl} & D_{cl} & -I \end{bmatrix} < 0
$$

with the H_{∞} synthesis LMIs

$$
X_v > 0 \quad \text{and} \quad \begin{bmatrix} A_v^* + A_v & B_v & C_v^* \\ B_v^* & -I & D_v^* \\ C_v & D_v & -I \end{bmatrix} < 0
$$

Optimizing the induced-norm

The following problem

minimize $\|\underline{S}(P, K)\|$ subject to The closed-loop is stable

is equivalent to the LMI problem

minimize
$$
\gamma
$$

\nsubject to $X_v > 0$
\n
$$
\begin{bmatrix}\nA_v^* + A_v & B_v & C_v^* \\
B_v^* & -\gamma I & D_v^* \\
C_v & D_v & -\gamma I\n\end{bmatrix} < 0
$$

- No bisection search necessary.
- The LMI variables are γ , X , Y , A_n , B_n , C_n , D_n .

The H_2 problem

Given the LTI system

$$
\dot{x}(t) = Ax(t) + Bw(t) \qquad x(0) = 0
$$

$$
z(t) = Cx(t) + Dw(t)
$$

The H_2 norm of G is defined as

$$
||G||_2^2 = \frac{1}{2\pi} \int_{-\infty}^{\infty} \text{Trace}(\hat{G}^*(j\omega)\hat{G}(j\omega)) d\omega
$$

where

$$
\hat{G}(j\omega) = C(j\omega I - A)^{-1}B + D
$$

H_2 analysis

The following are equivalent

- $||G||_2 \leq \gamma$
- there exist X and Z such that

$$
D = 0, \qquad \begin{bmatrix} A^*X + XA & XB \\ B^*X & -\gamma I \end{bmatrix} < 0, \qquad \begin{bmatrix} X & C^* \\ C & Z \end{bmatrix} > 0, \qquad \text{Trace}(Z) < \gamma
$$

H_2 synthesis

There exists a stabilizing controller K such that

 $||S(P, K)||_2 < \gamma$

if and only if there exist $Z, X, Y, A_n, B_n, C_n, D_n$ satisfying the LMIs

$$
D_v = 0, \qquad \begin{bmatrix} A_v^* + A_v & B_v \\ B_v^* & -\gamma I \end{bmatrix} < 0, \qquad \begin{bmatrix} X_v & C_v^* \\ C_v & Z \end{bmatrix} > 0, \qquad \text{Trace}(Z) < \gamma
$$