Engr210a Lecture 16: H_{∞} synthesis

- State-feedback problem
- KYP formulation
- Change of variables
- Synthesis theorem
- General problem formulation
- Change of variables
- Synthesis theorem
- Formal correspondence
- The H_2 problem

Problem formulation

We have the following interconnection

and would like to find \boldsymbol{K} to solve

 $\begin{array}{ll} \mbox{minimize} & \|\underline{S}(P,K)\| \\ \mbox{subject to} & \mbox{The closed-loop is stable} \end{array}$

State feedback problem

We are given the plant P $\dot{x}(t) = Ax(t) + B_1w(t) + B_2u(t)$ $z(t) = C_1x(t) + D_{11}w(t) + D_{12}u(t)$

Controller

Find a controller K of the form

 $u(t) = D_K x(t)$

Closed-loop equations

We are given the plant P

$$\dot{x}(t) = Ax(t) + B_1w(t) + B_2u(t)$$
$$z(t) = C_1x(t) + D_{11}w(t) + D_{12}u(t)$$

and controller $u = D_K x$.

The closed-loop map from w to z is

$$\dot{x}_{cl}(t) = A_{cl}x_{cl}(t) + B_{cl}w(t)$$
$$z(t) = C_{cl}x(t) + D_{cl}w(t)$$

where

$$A_{cl} = A + B_2 D_K$$
 $B_{cl} = B_1$
 $C_{cl} = C_1 + D_{12} D_K$ $D_{cl} = D_{11}$

Convenient form

Closed-loop parameters are affine in controller parameters:

$$\begin{bmatrix} A_{cl} & B_{cl} \\ C_{cl} & D_{cl} \end{bmatrix} = \begin{bmatrix} A & B_1 \\ C_1 & D_{11} \end{bmatrix} + \begin{bmatrix} 0 & B_2 \\ 0 & D_{12} \end{bmatrix} \begin{bmatrix} 0 \\ D_K \end{bmatrix}$$

The KYP lemma

The following are equivalent

- ||G|| < 1 and A is Hurwitz.
- There exists $X \in \mathbb{R}^{n \times n}$ such that

$$X > 0 \quad \text{and} \quad \begin{bmatrix} A^*X + XA \ XB \\ B^*X \ -I \end{bmatrix} + \begin{bmatrix} C^* \\ D^* \end{bmatrix} \begin{bmatrix} C \ D \end{bmatrix} < 0$$

Schur complement

Applying the Schur complement gives the equivalent statement

• There exists $X \in \mathbb{R}^{n \times n}$ such that

$$X > 0 \quad \text{and} \quad \begin{bmatrix} A^*X + XA \ XB \ C^* \\ B^*X \ -I \ D^* \\ C \ D \ -I \end{bmatrix} < 0$$

The KYP Lemma

The following are equivalent

- $||\underline{S}(P, K)|| < 1$ and A_{cl} is Hurwitz.
- There exists $X_{cl} \in \mathbb{R}^{n \times n}$ such that

$$X_{cl} > 0 \quad \text{and} \quad \begin{bmatrix} A_{cl}^* X_{cl} + X_{cl} A_{cl} & X_{cl} B_{cl} \\ B_{cl}^* X_{cl} & -I \end{bmatrix} + \begin{bmatrix} C_{cl}^* \\ D_{cl}^* \end{bmatrix} \begin{bmatrix} C_{cl} & D_{cl} \end{bmatrix} < 0$$

Schur complement

Applying the Schur complement gives the equivalent statement

• There exists $X_{cl} \in \mathbb{R}^{n \times n}$ such that

$$X_{cl} > 0 \quad \text{and} \quad \begin{bmatrix} A_{cl}^* X_{cl} + X_{cl} A_{cl} & X_{cl} B_{cl} & C_{cl}^* \\ B_{cl}^* X_{cl} & -I & D_{cl}^* \\ C_{cl} & D_{cl} & -I \end{bmatrix} < 0$$

16 - 6 H_{∞} synthesis

Convexity

We would like to find D_K such that

there exists
$$X_{cl} > 0$$
 such that
$$\begin{bmatrix} A_{cl}^* X_{cl} + X_{cl} A_{cl} & X_{cl} B_{cl} & C_{cl}^* \\ B_{cl}^* X_{cl} & -I & D_{cl}^* \\ C_{cl} & D_{cl} & -I \end{bmatrix} < 0$$

We know $\begin{bmatrix} A_{cl} & B_{cl} \\ C_{cl} & D_{cl} \end{bmatrix} = \begin{bmatrix} A & B_1 \\ C_1 & D_{11} \end{bmatrix} + \begin{bmatrix} 0 & B_2 \\ 0 & D_{12} \end{bmatrix} \begin{bmatrix} 0 \\ D_K \end{bmatrix}.$

Hence the above conditions are

$$X_{cl} > 0 \quad \text{and} \quad \begin{bmatrix} (A + B_2 D_K)^* X_{cl} + X_{cl} (A + B_2 D_K) & X B_1 & C_1 + D_{12} D_K \\ B_1^* X & -I & D_{11} \\ C_1^* + D_K^* D_{12}^* & D_{11}^* & -I \end{bmatrix} < 0$$

- If we know X_{cl} , then above inequality is affine in D_K . Hence it is an LMI and we can find the controller.
- If we know the controller parameter D_K , then the inequality is affine in X_{cl} , and we can compute the closed-loop norm.
- Both at once?

16 - 7 H_{∞} synthesis

Transformation

Let
$$Y_{cl} = \left(X_{cl}^{-1}
ight)^*$$
 and $C_n = D_K Y_{cl}.$

Define

The following is an affine function of C_n and Y_{cl} .

$$\begin{bmatrix} A_v & B_v \\ C_v & D_v \end{bmatrix} = \begin{bmatrix} AY_{cl} & B_1 \\ C_1Y_{cl} & D_{11} \end{bmatrix} + \begin{bmatrix} 0 & B_2 \\ 0 & D_{12} \end{bmatrix} \begin{bmatrix} 0 \\ C_n \end{bmatrix}$$

Lemma

The following will be useful in transforming the KYP lemma

$$\begin{bmatrix} A_v & B_v \\ C_v & D_v \end{bmatrix} = \begin{bmatrix} Y_{cl}^* & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} X_{cl} A_{cl} & X_{cl} B_{cl} \\ C_{cl} & D_{cl} \end{bmatrix} \begin{bmatrix} Y_{cl} & 0 \\ 0 & I \end{bmatrix}$$

Proof

Substitute

$$\begin{bmatrix} A_{cl} & B_{cl} \\ C_{cl} & D_{cl} \end{bmatrix} = \begin{bmatrix} A & B_1 \\ C_1 & D_{11} \end{bmatrix} + \begin{bmatrix} 0 & B_2 \\ 0 & D_{12} \end{bmatrix} \begin{bmatrix} 0 \\ D_K \end{bmatrix}$$

Synthesis theorem

The following are equivalent

- There exists a stabilizing state-feedback controller such that $||\underline{S}(P, K)|| < 1$
- There exists $Y_{cl} > 0$ and C_n such that

$$\begin{bmatrix} A_v^* + A_v & B_v & C_v^* \\ B_v^* & -I & D_v^* \\ C_v & D_v & -I \end{bmatrix} < 0$$

- Recall $\begin{bmatrix} A_v & B_v \\ C_v & D_v \end{bmatrix} = \begin{bmatrix} AY_{cl} & B_1 \\ C_1Y_{cl} & D_{11} \end{bmatrix} + \begin{bmatrix} 0 & B_2 \\ 0 & D_{12} \end{bmatrix} \begin{bmatrix} 0 \\ C_n \end{bmatrix}$
- This is affine in Y_{cl} and C_n .
- Hence the above inequalities are LMIs in these variables.
- Once we have found Y_{cl} and C_n , we can find D_K from the formula

$$D_K = C_n Y_{cl}^{-1}$$

Proof

• A stabilizing controller which achieves $||\underline{S}(P, K)|| < 1$ exists iff

there exists $X_{cl} > 0$ such that

$$\begin{bmatrix} A_{cl}^* X_{cl} + X_{cl} A_{cl} & X_{cl} B_{cl} & C_{cl}^* \\ B_{cl}^* X_{cl} & -I & D_{cl}^* \\ C_{cl} & D_{cl} & -I \end{bmatrix} < 0$$

• This is equivalent to

there exists
$$Y_{cl} > 0$$
 s.t.
$$\begin{bmatrix} Y_{cl}^* & 0 & 0 \\ 0 & I & 0 \\ 0 & 0 & I \end{bmatrix} \begin{bmatrix} A_{cl}^* X_{cl} + X_{cl} A_{cl} & X_{cl} B_{cl} & C_{cl}^* \\ B_{cl}^* X_{cl} & -I & D_{cl}^* \\ C_{cl} & D_{cl} & -I \end{bmatrix} \begin{bmatrix} Y_{cl} & 0 & 0 \\ 0 & I & 0 \\ 0 & 0 & I \end{bmatrix} < 0$$

Note invertibility of $Y_{cl} = (X_{cl}^{-1})^*$.

• This inequality is equivalent to

$$\begin{bmatrix} A_v^* + A_v & B_v & C_v^* \\ B_v^* & -I & D_v^* \\ C_v & D_v & -I \end{bmatrix} < 0$$

where we have used

$$\begin{bmatrix} A_v & B_v \\ C_v & D_v \end{bmatrix} = \begin{bmatrix} Y_{cl}^* & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} X_{cl} A_{cl} & X_{cl} B_{cl} \\ C_{cl} & D_{cl} \end{bmatrix} \begin{bmatrix} Y_{cl} & 0 \\ 0 & I \end{bmatrix}$$

Problem formulation

We have the following interconnection

and would like to find \boldsymbol{K} to solve

 $\begin{array}{ll} \mbox{minimize} & \left\|\underline{S}(P,K)\right\| \\ \mbox{subject to} & \mbox{The closed-loop is stable} \end{array}$

State-space

We are given the plant P

$$P = \begin{bmatrix} P_{11} & P_{12} \\ P_{21} & P_{22} \end{bmatrix}$$

which is not necessarily stable.

In state-space

$$\dot{x}(t) = Ax(t) + B_1w(t) + B_2u(t)$$

$$z(t) = C_1x(t) + D_{11}w(t) + D_{12}u(t)$$

$$y(t) = C_2x(t) + D_{21}w(t) + D_{22}u(t)$$

Controller

Find a controller \boldsymbol{K} of the form

$$\dot{x}_K(t) = A_K x(t) + B_K y(t)$$
$$u(t) = C_K x(t) + D_K y(t)$$

Controller order

- We start by assuming the controller has order $n_K \ge n$.
- We will find that any performance achievable by a controller of order $n_K > n$ is also achievable by one of order n.

Assumption

• Direct feedthrough terms: Assume that $D_{22} = 0$; if $D_{22} \neq 0$ the same approach works with a simple change of variables.

Closed-loop equations

The closed-loop map from w to z is

$$\dot{x}_{cl}(t) = A_{cl}x_{cl}(t) + B_{cl}w(t)$$
$$z(t) = C_{cl}x(t) + D_{cl}w(t)$$

Closed-loop parameters are affine in controller parameters:

$$\begin{bmatrix} A_{cl} & B_{cl} \\ C_{cl} & D_{cl} \end{bmatrix} = \begin{bmatrix} A & 0 & B_1 \\ 0 & 0 & 0 \\ C_1 & 0 & D_{11} \end{bmatrix} + \begin{bmatrix} 0 & B_2 \\ I & 0 \\ 0 & D_{12} \end{bmatrix} \begin{bmatrix} A_K & B_K \\ C_K & D_K \end{bmatrix} \begin{bmatrix} 0 & I & 0 \\ C_2 & 0 & D_{21} \end{bmatrix}$$

The KYP Lemma

The following are equivalent

- $||\underline{S}(P, K)|| < 1$ and A_{cl} is Hurwitz.
- There exists $X_{cl} \in \mathbb{R}^{(n+n_K) \times (n+n_K)}$ such that

$$X_{cl} > 0 \quad \text{and} \quad \begin{bmatrix} A_{cl}^* X_{cl} + X_{cl} A_{cl} & X_{cl} B_{cl} \\ B_{cl}^* X_{cl} & -I \end{bmatrix} + \begin{bmatrix} C_{cl}^* \\ D_{cl}^* \end{bmatrix} \begin{bmatrix} C_{cl} & D_{cl} \end{bmatrix} < 0$$

Schur complement

Applying the Schur complement gives the equivalent statement

• There exists
$$X_{cl} \in \mathbb{R}^{(n+n_K) \times (n+n_K)}$$
 such that

$$X_{cl} > 0 \quad \text{and} \quad \begin{bmatrix} A_{cl}^* X_{cl} + X_{cl} A_{cl} & X_{cl} B_{cl} & C_{cl}^* \\ B_{cl}^* X_{cl} & -I & D_{cl}^* \\ C_{cl} & D_{cl} & -I \end{bmatrix} < 0$$

Convexity

We would like to find A_K, B_K, C_K, D_K such that

there exists
$$X_{cl} > 0$$
 such that
$$\begin{bmatrix} A_{cl}^* X_{cl} + X_{cl} A_{cl} & X_{cl} B_{cl} & C_{cl}^* \\ B_{cl}^* X_{cl} & -I & D_{cl}^* \\ C_{cl} & D_{cl} & -I \end{bmatrix} < 0$$

We know

$$\begin{bmatrix} A_{cl} & B_{cl} \\ C_{cl} & D_{cl} \end{bmatrix} = \begin{bmatrix} A & 0 & B_1 \\ 0 & 0 & 0 \\ C_1 & 0 & D_{11} \end{bmatrix} + \begin{bmatrix} 0 & B_2 \\ I & 0 \\ 0 & D_{12} \end{bmatrix} \begin{bmatrix} A_K & B_K \\ C_K & D_K \end{bmatrix} \begin{bmatrix} 0 & I & 0 \\ C_2 & 0 & D_{21} \end{bmatrix}$$

- If we know X_{cl} , then above inequality is affine in A_K, B_K, C_K, D_K , hence it is an LMI and we can find the controller.
- If we know the controller A_K, B_K, C_K, D_K , then the inequality is affine in X_{cl} , and we can compute the closed-loop norm.
- Both at once?

Transformation formulae

Given X_{cl} and A_K, B_K, C_K, D_K define the following new variables

• Define X, X_2 and Y, Y_2 by

$$X_{cl} = \begin{bmatrix} X & X_2 \\ X_2^* & X_3 \end{bmatrix} \qquad X_{cl}^{-1} = \begin{bmatrix} Y & Y_2 \\ Y_2^* & Y_3 \end{bmatrix}$$

• Define
$$A_n, B_n, C_n, D_n$$
 by

$$\begin{bmatrix} A_n & B_n \\ C_n & D_n \end{bmatrix} = \begin{bmatrix} X_2 & XB_2 \\ 0 & I \end{bmatrix} \begin{bmatrix} A_K & B_K \\ C_K & D_K \end{bmatrix} \begin{bmatrix} Y_2^* & 0 \\ C_2Y & I \end{bmatrix} + \begin{bmatrix} XAY & 0 \\ 0 & 0 \end{bmatrix}$$
• Define Y_{cl} by

$$Y_{cl} = \begin{bmatrix} Y & I \\ Y_2^* & 0 \end{bmatrix}$$

- $X_{cl} > 0$ implies X > 0 and Y > 0.
- Dimensions: $X, Y \in \mathbb{R}^{n \times n}$, $X_2, Y_2 \in \mathbb{R}^{n \times n_K}$ and $Y_{cl} \in \mathbb{R}^{(n+n_K) \times 2n}$.
- We will write the KYP LMI for the closed-loop in terms of X, Y, A_n, B_n, C_n, D_n .

Transformation lemma

Given
$$X, Y \in \mathbb{R}^{n \times n}$$
 such that $\begin{bmatrix} Y & I \\ I & X \end{bmatrix} > 0$, then
• There exist $X_2, X_3, Y_2, Y_3 \in \mathbb{R}^{n \times n}$ such that $\begin{bmatrix} X & X_2 \\ X_2^* & X_3 \end{bmatrix}^{-1} = \begin{bmatrix} Y & Y_2 \\ Y_2^* & Y_3 \end{bmatrix}$

• Let X_{cl} and Y_{cl} be as above. Then $X_{cl} > 0$ and Y_{cl} has full column rank.

Proof

• Y_{cl}

- Since $\begin{bmatrix} Y & I \\ I & X \end{bmatrix} > 0$, we have I XY is nonsingular.
- We need to find X_2 and Y_2 such that

$$X_2 Y_2^* = I - XY$$

Here X_2 and Y_2 can be chosen square and nonsingular. (e.g. choose $Y_2 = I$.)

• Then X_{cl} is uniquely determined, since

$$\begin{bmatrix} Y & Y_2 \\ I & 0 \end{bmatrix} \begin{bmatrix} X & X_2 \\ X_2^* & X_3 \end{bmatrix} = \begin{bmatrix} I & 0 \\ X & X_2 \end{bmatrix} \implies X_{cl} = \begin{bmatrix} Y & Y_2 \\ I & 0 \end{bmatrix}^{-1} \begin{bmatrix} I & 0 \\ X & X_2 \end{bmatrix}$$

has full column rank, since Y_2 is nonsingular, and $Y_{cl} = \begin{bmatrix} Y & I \\ Y_2^* & 0 \end{bmatrix}$

Converse transformation lemma

Given $X_{cl} > 0$ such that X_2 has full row rank. Then

- $\bullet \quad \begin{bmatrix} Y & I \\ I & X \end{bmatrix} > 0$
- Y_{cl} has full column rank.

Proof

- Clearly $\begin{bmatrix} I & 0 \\ X & X_2 \end{bmatrix}$ has full row rank.
- Note that $\begin{bmatrix} Y & Y_2 \\ I & 0 \end{bmatrix} \begin{bmatrix} X & X_2 \\ X_2^* & X_3 \end{bmatrix} = \begin{bmatrix} I & 0 \\ X & X_2 \end{bmatrix}$ and hence $Y_{cl} = \begin{bmatrix} Y & I \\ Y_2^* & 0 \end{bmatrix} = \begin{bmatrix} I & X^* \\ 0 & X_2^* \end{bmatrix} X_{cl}^{-1}$

has full column rank.

• $\begin{bmatrix} Y & I \\ I & X \end{bmatrix} = Y_{cl}^* X_{cl} Y_{cl}$, which is positive definite since Y_{cl} has full column rank.

Definitions

$$\begin{bmatrix} A_v & B_v \\ C_v & D_v \end{bmatrix} = \begin{bmatrix} AY & A & B_1 \\ 0 & XA & XB_1 \\ C_1Y & C_1 & D_{11} \end{bmatrix} + \begin{bmatrix} 0 & B_2 \\ I & 0 \\ 0 & D_{12} \end{bmatrix} \begin{bmatrix} A_n & B_n \\ C_n & D_n \end{bmatrix} \begin{bmatrix} I & 0 & 0 \\ 0 & C_2 & D_{21} \end{bmatrix}$$
$$X_v = \begin{bmatrix} Y & I \\ I & X \end{bmatrix}$$

Lemma

$$\begin{bmatrix} A_v & B_v \\ C_v & D_v \end{bmatrix} = \begin{bmatrix} Y_{cl}^* & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} X_{cl} A_{cl} & X_{cl} B_{cl} \\ C_{cl} & D_{cl} \end{bmatrix} \begin{bmatrix} Y_{cl} & 0 \\ 0 & I \end{bmatrix} \quad \text{and} \quad X_v = Y_{cl}^* X_{cl} Y_{cl}$$

Proof: Use the following previous definitions

•
$$Y_{cl} = \begin{bmatrix} Y & I \\ Y_2^* & 0 \end{bmatrix}$$

• $\begin{bmatrix} A_{cl} & B_{cl} \\ C_{cl} & D_{cl} \end{bmatrix} = \begin{bmatrix} A & 0 & B_1 \\ 0 & 0 & 0 \\ C_1 & 0 & D_{11} \end{bmatrix} + \begin{bmatrix} 0 & B_2 \\ I & 0 \\ 0 & D_{12} \end{bmatrix} \begin{bmatrix} A_K & B_K \\ C_K & D_K \end{bmatrix} \begin{bmatrix} 0 & I & 0 \\ C_2 & 0 & D_{21} \end{bmatrix}$
• $\begin{bmatrix} A_n & B_n \\ C_n & D_n \end{bmatrix} = \begin{bmatrix} X_2 & XB_2 \\ 0 & I \end{bmatrix} \begin{bmatrix} A_K & B_K \\ C_K & D_K \end{bmatrix} \begin{bmatrix} Y_2^* & 0 \\ C_2Y & I \end{bmatrix} + \begin{bmatrix} XAY & 0 \\ 0 & 0 \end{bmatrix}$

Theorem

There exists a stabilizing controller K such that

 $\left\|\underline{S}(P,K)\right\| < 1$

if and only if there exists X, Y, A_n, B_n, C_n, D_n satisfying the LMIs

$$X_{v} > 0 \text{ and } \begin{bmatrix} A_{v}^{*} + A_{v} & B_{v} & C_{v}^{*} \\ B_{v}^{*} & -I & D_{v}^{*} \\ C_{v} & D_{v} & -I \end{bmatrix} < 0$$

Notes

- The above inequality is affine, and hence an LMI, in X, Y, A_n, B_n, C_n, D_n .
- Once we have found X, Y, A_n, B_n, C_n, D_n , we can find X_2 , Y_2 from

$$X_2 Y_2^* = I - XY$$

and hence find the controller using

$$\begin{bmatrix} A_K & B_K \\ C_K & D_K \end{bmatrix} = \begin{bmatrix} X_2 & XB_2 \\ 0 & I \end{bmatrix}^{-1} \left(\begin{bmatrix} A_n & B_n \\ C_n & D_n \end{bmatrix} - \begin{bmatrix} XAY & 0 \\ 0 & 0 \end{bmatrix} \right) \begin{bmatrix} Y_2^* & 0 \\ C_2Y & I \end{bmatrix}^{-1}$$

• We can always find a controller of dimension n, since X_2 can be chosen to be $n \times n$.

16 - 19 H_{∞} synthesis

Proof (only if)

Suppose there exists X_{cl} and A_K, B_K, C_K, D_K satisfying

$$X_{cl} > 0 \quad \text{and} \quad \begin{bmatrix} A_{cl}^* X_{cl} + X_{cl} A_{cl} & X_{cl} B_{cl} & C_{cl}^* \\ B_{cl}^* X_{cl} & -I & D_{cl}^* \\ C_{cl} & D_{cl} & -I \end{bmatrix} < 0$$

then since the set of such X_{cl} is open, we can perturb X_{cl} so that $X_{cl} = \begin{bmatrix} X & X_2 \\ X_2^* & X_3 \end{bmatrix}$ satisfies the above inequalities with X_2 having full row rank.

Then according to the converse transformation lemma, Y_{cl} has full column rank, and hence

$$Y_{cl}^* X_{cl} Y_{cl} > 0 \quad \text{and} \quad \begin{bmatrix} Y_{cl}^* & 0 & 0 \\ 0 & I & 0 \\ 0 & 0 & I \end{bmatrix} \begin{bmatrix} A_{cl}^* X_{cl} + X_{cl} A_{cl} & X_{cl} B_{cl} & C_{cl}^* \\ B_{cl}^* X_{cl} & -I & D_{cl}^* \\ C_{cl} & D_{cl} & -I \end{bmatrix} \begin{bmatrix} Y_{cl} & 0 & 0 \\ 0 & I & 0 \\ 0 & 0 & I \end{bmatrix} < 0$$

These inequalities are

$$X_{v} > 0 \quad \text{and} \quad \begin{bmatrix} A_{v}^{*} + A_{v} & B_{v} & C_{v}^{*} \\ B_{v}^{*} & -I & D_{v}^{*} \\ C_{v} & D_{v} & -I \end{bmatrix} < 0$$

since we know
$$\begin{bmatrix} A_{v} & B_{v} \\ C_{v} & D_{v} \end{bmatrix} = \begin{bmatrix} Y_{cl}^{*} & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} X_{cl}A_{cl} & X_{cl}B \\ C_{cl} & D_{cl} \end{bmatrix} \begin{bmatrix} Y_{cl} & 0 \\ 0 & I \end{bmatrix}.$$

16 - 20 H_{∞} synthesis

Proof (if)

Suppose there exist X and Y such that

$$X_{v} > 0 \text{ and } \begin{bmatrix} A_{v}^{*} + A_{v} & B_{v} & C_{v}^{*} \\ B_{v}^{*} & -I & D_{v}^{*} \\ C_{v} & D_{v} & -I \end{bmatrix} < 0$$

Then, from the transformation lemma, we can construct $X_{cl} > 0$ and Y_{cl} with full row rank which satisfy

$$Y_{cl}^* X_{cl} Y_{cl} > 0 \quad \text{and} \quad \begin{bmatrix} Y_{cl}^* & 0 & 0 \\ 0 & I & 0 \\ 0 & 0 & I \end{bmatrix} \begin{bmatrix} A_{cl}^* X_{cl} + X_{cl} A_{cl} & X_{cl} B_{cl} & C_{cl}^* \\ B_{cl}^* X_{cl} & -I & D_{cl}^* \\ C_{cl} & D_{cl} & -I \end{bmatrix} \begin{bmatrix} Y_{cl} & 0 & 0 \\ 0 & I & 0 \\ 0 & 0 & I \end{bmatrix} < 0$$

hence

$$X_{cl} > 0 \quad \text{and} \quad \begin{bmatrix} A_{cl}^* X_{cl} + X_{cl} A_{cl} & X_{cl} B_{cl} & C_{cl}^* \\ B_{cl}^* X_{cl} & -I & D_{cl}^* \\ C_{cl} & D_{cl} & -I \end{bmatrix} < 0$$

for A_K, B_K, C_K, D_K defined by

$$\begin{bmatrix} A_K & B_K \\ C_K & D_K \end{bmatrix} = \begin{bmatrix} X_2 & XB_2 \\ 0 & I \end{bmatrix}^{-1} \left(\begin{bmatrix} A_n & B_n \\ C_n & D_n \end{bmatrix} - \begin{bmatrix} XAY & 0 \\ 0 & 0 \end{bmatrix} \right) \begin{bmatrix} Y_2^* & 0 \\ C_2Y & I \end{bmatrix}^{-1}$$

Formal correspondence

Compare the KYP LMIs

$$X_{cl} > 0 \quad \text{and} \quad \begin{bmatrix} A_{cl}^* X_{cl} + X_{cl} A_{cl} & X_{cl} B_{cl} & C_{cl}^* \\ B_{cl}^* X_{cl} & -I & D_{cl}^* \\ C_{cl} & D_{cl} & -I \end{bmatrix} < 0$$

with the H_∞ synthesis LMIs

$$X_{v} > 0 \text{ and } \begin{bmatrix} A_{v}^{*} + A_{v} & B_{v} & C_{v}^{*} \\ B_{v}^{*} & -I & D_{v}^{*} \\ C_{v} & D_{v} & -I \end{bmatrix} < 0$$

Optimizing the induced-norm

The following problem

 $\begin{array}{ll} \mbox{minimize} & \|\underline{S}(P,K)\| \\ \mbox{subject to} & \mbox{The closed-loop is stable} \end{array}$

is equivalent to the LMI problem

$$\begin{array}{ll} \mbox{minimize} & \gamma \\ \mbox{subject to} & X_v > 0 \\ & \begin{bmatrix} A_v^* + A_v & B_v & C_v^* \\ B_v^* & -\gamma I & D_v^* \\ C_v & D_v & -\gamma I \end{bmatrix} < 0 \\ \end{array}$$

- No bisection search necessary.
- The LMI variables are $\gamma, X, Y, A_n, B_n, C_n, D_n$.

The H_2 problem

Given the LTI system

$$\dot{x}(t) = Ax(t) + Bw(t) \qquad x(0) = 0$$
$$z(t) = Cx(t) + Dw(t)$$

The H_2 norm of G is defined as

$$||G||_2^2 = \frac{1}{2\pi} \int_{-\infty}^{\infty} \operatorname{Trace} \left(\hat{G}^*(j\omega) \hat{G}(j\omega) \right) d\omega$$

where

$$\hat{G}(j\omega) = C(j\omega I - A)^{-1}B + D$$

H_2 analysis

The following are equivalent

- $||G||_2 \le \gamma$
- there exist X and Z such that

$$D = 0, \qquad \begin{bmatrix} A^*X + XA & XB \\ B^*X & -\gamma I \end{bmatrix} < 0, \qquad \begin{bmatrix} X & C^* \\ C & Z \end{bmatrix} > 0, \qquad \text{Trace}(Z) < \gamma$$

H_2 synthesis

There exists a stabilizing controller \boldsymbol{K} such that

 $\|\underline{S}(P,K)\|_2 < \gamma$

if and only if there exist $Z, X, Y, A_n, B_n, C_n, D_n$ satisfying the LMIs

$$D_{v} = 0, \qquad \begin{bmatrix} A_{v}^{*} + A_{v} & B_{v} \\ B_{v}^{*} & -\gamma I \end{bmatrix} < 0, \qquad \begin{bmatrix} X_{v} & C_{v}^{*} \\ C_{v} & Z \end{bmatrix} > 0, \qquad \text{Trace}(Z) < \gamma$$