Engr210a Lecture 17: LFTs and robustness

- Additive perturbations
- General problem formulation
- Example of parametric uncertainty
- Small-gain theorem
- Interconnections
- Robust performance
- Linking robust performance and robust stability
- Diagonal perturbations
- Scaling
- Necessity

Additive perturbations

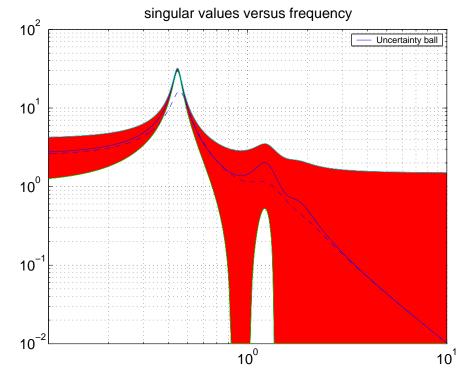
Instead of trying to design a control system for G_n , try to design a controller that achieves a specified level of performance for any G such that

 $\|G - G_{\mathsf{nominal}}\| < c$

In other words, design a controller that will work for any G such that

$$G = G_{\text{nominal}} + \Delta$$
 for some Δ with $\|\Delta\| < c$

This sounds reasonable, but leads to large uncertainty at small values of $\hat{G}(j\omega)$.

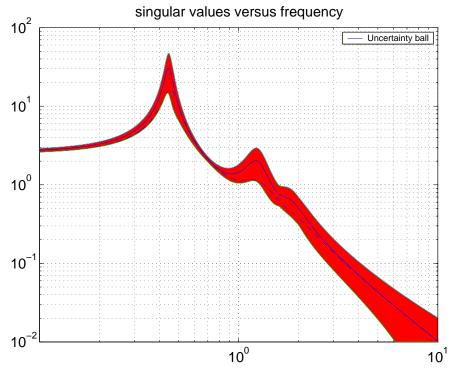


Weighted additive uncertainty

Design a controller that achieves a specified level of performance for any G such that

 $G = G_{\text{nominal}} + W\Delta$ for some Δ with $\|\Delta\| < c$

Here W is a transfer function, chosen to be small at frequencies where the model is good, and large elsewhere.

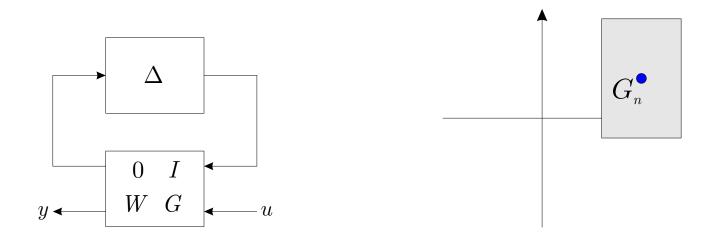


Weighted additive uncertainty

Design a controller that achieves a specified level of performance for any G such that

 $G = G_{\text{nominal}} + W\Delta$ for some Δ with $\|\Delta\| < c$

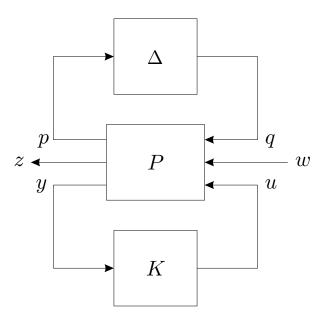
We are therefore trying to do a control design for a set of systems, not just a single system. This particular set is a ball in H_{∞} . It is called a weighted additive uncertainty ball.



We can also represent this as the above *linear-fractional transformation*. Here the system $G = \begin{bmatrix} 0 & I \\ W & G \end{bmatrix}$ is called *the generalized plant*.

General problem setup

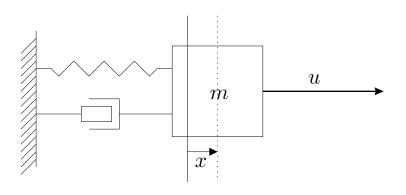
We will consider the general problem



Interpretation

- Δ is the model uncertainty.
- z is a signal we would like to keep small
- $\bullet \ w$ represents external disturbances

Example



The equation of motion is

$$\ddot{x}(t) + \frac{c}{m}\dot{x} + \frac{k}{m}x = \frac{u}{m}$$

Parametric uncertainty

• Suppose we know m within 10%, c within 20%, and k within 30%.

$$m = m_n(1 + 0.1\delta_m)$$
$$c = c_n(1 + 0.2\delta_c)$$
$$k = k_n(1 + 0.3\delta_k)$$

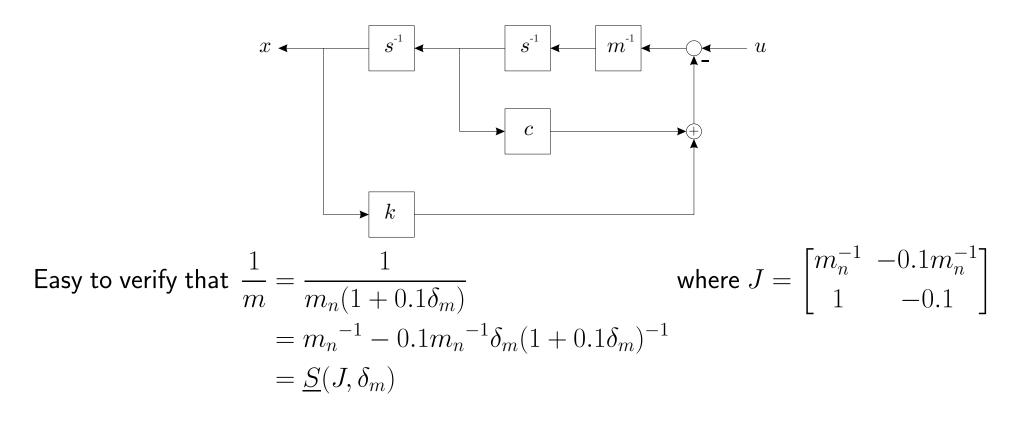
- Here $|\delta_m| \le 1$, $|\delta_k| \le 1$, $|\delta_c| \le 1$.
- m_n is called the *nominal value* of m, and δ_m is called the *perturbation*.

Block-diagram

The equation of motion is

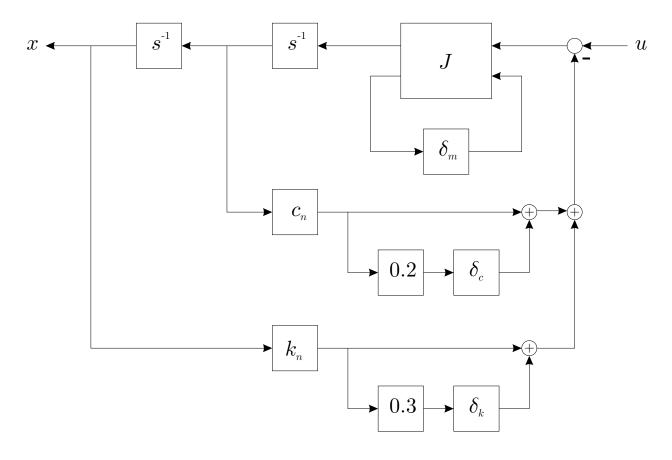
$$\ddot{x}(t) + \frac{c}{m}\dot{x} + \frac{k}{m}x = \frac{u}{m}$$

In block diagram form



Block-diagram

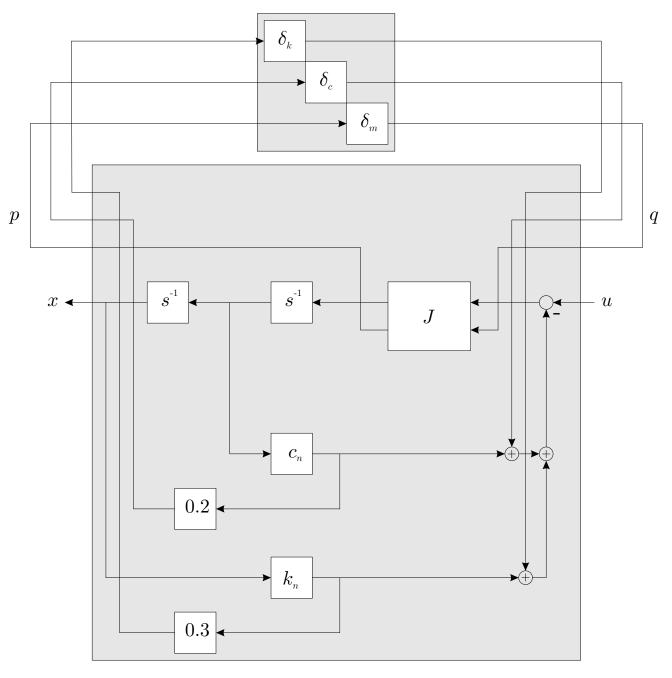
With the perturbations we have



where

$$J = \begin{bmatrix} m_n^{-1} & -0.1m_n^{-1} \\ 1 & -0.1 \end{bmatrix}$$

Block-diagram



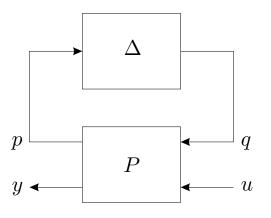
State-space form

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -k_n m_n^{-1} & -c_n m_n^{-1} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ -m_n^{-1} & -m_n^{-1} & -0.1 m_n^{-1} \end{bmatrix} \begin{bmatrix} q_1 \\ q_2 \\ q_3 \end{bmatrix} + \begin{bmatrix} 0 \\ m_n^{-1} \end{bmatrix} u$$

$$\begin{bmatrix} p_1 \\ p_2 \\ p_3 \end{bmatrix} = \begin{bmatrix} 0.3k_n & 0 \\ 0 & 0.2c_n \\ -k_n & -c_n \end{bmatrix} x + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -1 & -1 & -0.1 \end{bmatrix} \begin{bmatrix} q_1 \\ q_2 \\ q_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u$$

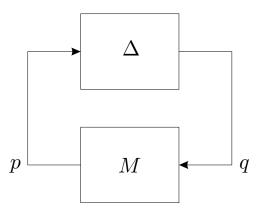
$$y = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

LFT representation



• Note Δ is block-diagonal.

Small-gain theorem, version 2



Assumptions

- $M \in \mathcal{L}(L_2)$.
- $\Delta \in \mathcal{L}(L_2).$

Theorem

The closed-loop is input-output stable for all Δ such that $\|\Delta\| \leq 1$ if and only if $\|M\| < 1$.

Small-gain theorem, version 2

The closed-loop is input-output stable for all Δ such that $\|\Delta\| \leq 1$ if and only if $\|M\| < 1$.

Proof

Recall the closed-loop is stable if and only if

$$Z = \begin{bmatrix} I & -\Delta \\ -M & I \end{bmatrix}^{-1} = \begin{bmatrix} (I - \Delta M)^{-1} & \Delta (I - M\Delta)^{-1} \\ (I - M\Delta)^{-1}M & (I - M\Delta)^{-1} \end{bmatrix}$$

is stable.

(if) We know $||M\Delta|| \le ||M|| ||\Delta|| < 1$. Hence $I - M\Delta$ is invertible. (only if) We need to show that

$$\|M\| \ge 1 \implies \text{There exists } \Delta, \|\Delta\| \le 1, \text{ such that}$$

 $I - M\Delta \text{ is singular}$

For any M, $\rho(MM^*) = ||M||^2 \ge 1$. Let $\lambda = \rho(MM^*)$. Then since $\operatorname{spec}(MM^*)$ is closed $\lambda I - QQ^*$ is singular So choose $\Lambda = \lambda^{-1}Q^*$

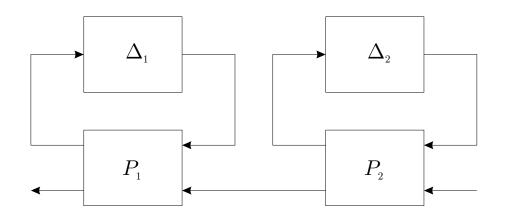
So choose $\Delta = \lambda^{-1}Q^*$.

Interconnecting uncertain systems

Block-diagonal uncertainty arises

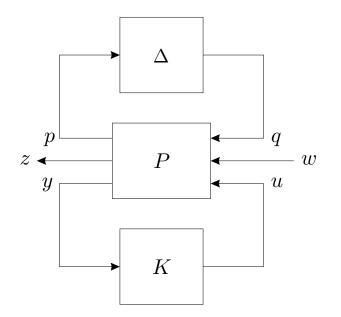
- From uncertain parameters
- From interconnected uncertain subsystems

Example: cascade



This can be written as an LFT on $\begin{bmatrix} \Delta_1 & 0 \\ 0 & \Delta_2 \end{bmatrix}$.

Robust performance



The closed-loop map $T: w \mapsto z$ is a function $T(\Delta, K)$.

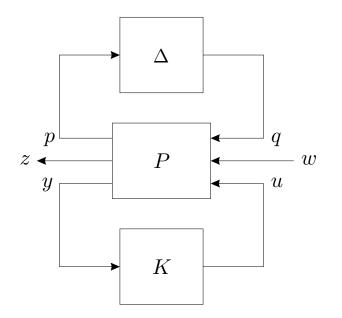
Control objective

Find K to solve

minimize γ subject to $||T(\Delta, K)|| \leq \gamma$ for all Δ with $||\Delta|| \leq 1$.

Often we have additional constraints, that Δ be block-diagonal.

Robust performance

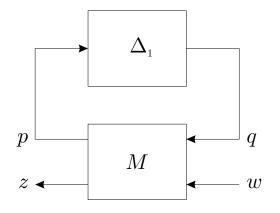


Worst-case interpretation

Find K to solve

minimize γ subject to $\max\left\{\|T(\Delta, K)\| \; ; \; \|\Delta\| \le 1\right\} \le \gamma$

Robust performance and robust stability

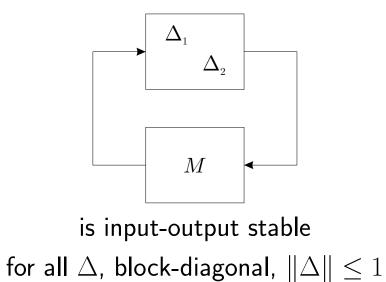


Interconnection

$$z = \overline{S}(M, \Delta_1)w = (M_{22} + M_{21}\Delta(I - M_{11}\Delta)^{-1}M_{12})w$$

Theorem

$$\max\left\{\|\overline{S}(M,\Delta_1)\|\;;\;\|\Delta_1\|\leq 1\right\}<1\qquad \Leftarrow$$



17 - 17 LFTs and robustness

Robust performance and robust stability

Define the set

$$\boldsymbol{\Delta} = \left\{ \begin{bmatrix} \Delta_1 & 0 \\ 0 & \Delta_2 \end{bmatrix} ; \|\Delta_1\| \le 1, \|\Delta_2\| \le 1 \right\}$$

Then the following are equivalent

- (i) $I M_{11}\Delta_1$ is invertible and $\|\overline{S}(M, \Delta_1)\| < 1$ for all Δ_1 with $\|\Delta_1\| \leq 1$.
- (ii) $I M\Delta$ is invertible for all Δ with $\|\Delta\| \le 1$.

Notes

- (i) is a *robust performance* specification
- (ii) is a *robust stability* specification.

Proof

We want to prove that the following are equivalent

(i) $I - M_{11}\Delta_1$ is invertible and $\|\overline{S}(M, \Delta_1)\| < 1$ for all Δ_1 with $\|\Delta_1\| \leq 1$.

(ii) $I - M\Delta$ is invertible for all Δ with $\|\Delta\| \le 1$.

First we show (i) \implies (ii)

• We know

$$I - M\Delta = I - \begin{bmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{bmatrix} \begin{bmatrix} \Delta_1 & 0 \\ 0 & \Delta_2 \end{bmatrix} = \begin{bmatrix} I - M_{11}\Delta_1 & -M_{12}\Delta_2 \\ -M_{21}\Delta_1 & I - M_{22}\Delta_2 \end{bmatrix}$$

• Hence

$$I - M\Delta = \begin{bmatrix} I & 0 \\ -M_{21}\Delta_1(I - M_{11}\Delta_1)^{-1} & I \end{bmatrix} \begin{bmatrix} I - M_{11}\Delta_1 & -M_{12}\Delta_2 \\ 0 & I - \bar{S}(M, \Delta_1)\Delta_2 \end{bmatrix}$$

Hence $I - M\Delta$ is nonsingular if $I - \overline{S}(M, \Delta_1)\Delta_2$ is nonsingular.

• This follows by assumption that $\|\bar{S}(M, \Delta_1)\| < 1$.

Proof

We want to prove that the following are equivalent

- (i) $I M_{11}\Delta_1$ is invertible and $\|\overline{S}(M, \Delta_1)\| < 1$ for all Δ_1 with $\|\Delta_1\| \leq 1$.
- (ii) $I M\Delta$ is invertible for all Δ with $\|\Delta\| \le 1$.

We now show (ii) \implies (i)

• Choose
$$\Delta = \begin{bmatrix} \Delta_1 & 0 \\ 0 & 0 \end{bmatrix}$$
 with $\|\Delta_1\| \le 1$. Then

$$I - M\Delta = \begin{bmatrix} I - M_{11}\Delta_1 & 0 \\ -M_{21}\Delta_1 & I \end{bmatrix}$$
 is nonsingular

by assumption, hence $I - M_{11}\Delta_1$ is nonsingular for all Δ_1 with $\|\Delta_1\| \leq 1$.

• For all Δ with $\|\Delta\| \leq 1$, we have

$$I - M\Delta = \begin{bmatrix} I & 0 \\ -M_{21}\Delta_1(I - M_{11}\Delta_1)^{-1} & I \end{bmatrix} \begin{bmatrix} I - M_{11}\Delta_1 & -M_{12}\Delta_2 \\ 0 & I - \bar{S}(M, \Delta_1)\Delta_2 \end{bmatrix}$$

is nonsingular.

• Hence by the small gain theorem, $\|\bar{S}(M, \Delta_1)\| < 1$ for all Δ_1 with $\|\Delta_1\| \leq 1$.

Diagonal perturbations and the small-gain theorem

We are interested in diagonal perturbations of the form

$$\boldsymbol{\Delta} = \left\{ \operatorname{diag}(\Delta_1, \dots, \Delta_d) \; ; \; \Delta_i \in \mathcal{L}(L_2), \; \|\Delta_i\| \leq 1 \right\}$$

Notes

- ||M|| < 1 if and only if the closed-loop is stable for all $||\Delta|| \le 1$.
- But we have a limited class of Δ ; those in Δ .
- Clearly ||M|| < 1 implies stability.
- What about necessity?

17 - 21 LFTs and robustness

Scaling the small-gain theorem

Diagonal perturbations

$$\boldsymbol{\Delta} = \left\{ \operatorname{diag}(\Delta_1, \dots, \Delta_d) \; ; \; \Delta_i \in \mathcal{L}(L_2), \; \|\Delta_i\| \leq 1 \right\}$$

Define the set of operators

$$\boldsymbol{\Theta} = \left\{ \boldsymbol{\Theta} \in \mathcal{L}(L_2), \ \boldsymbol{\Theta} \text{ is invertible}, \ \boldsymbol{\Theta} \boldsymbol{\Delta} = \boldsymbol{\Delta} \boldsymbol{\Theta} \text{ for all } \boldsymbol{\Delta} \in \boldsymbol{\Delta} \right\}$$

This set is called the *commutant* of Δ .

Notes

- If Θ commutes with Δ , then so does Θ^{-1} .
- We have

$$\begin{split} & I - M\Delta \text{ is invertible} \\ \Leftrightarrow & I - \Theta^{-1}\Theta M\Delta \text{ is invertible} \\ \Leftrightarrow & I - \Theta M\Delta\Theta^{-1} \text{ is invertible} \\ \Leftrightarrow & I - \Theta M\Theta^{-1}\Delta \text{ is invertible} \end{split}$$

• Scaled small-gain test: Robust stability if $\|\Theta M \Theta^{-1}\| < 1$ for some $\Theta \in \Theta$.

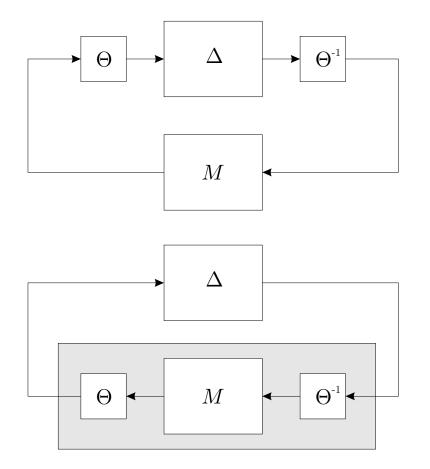
Scaled small-gain theorem

Suppose there exists $\boldsymbol{\Theta} \in \boldsymbol{\Theta}$ such that

 $\left\|\Theta M\Theta^{-1}\right\| < 1$

then the closed-loop is robustly input-output stable.

Feedback interpretation



The commutant set

For diagonal perturbations

$$\boldsymbol{\Delta} = \left\{ \operatorname{diag}(\Delta_1, \dots, \Delta_d) \; ; \; \Delta_i \in \mathcal{L}(L_2), \; \|\Delta_i\| \leq 1 \right\}$$

The commutant set is

$$\boldsymbol{\Theta} = \left\{ \operatorname{diag}(\theta_1 I, \dots, \theta_d I) \; ; \; \theta_i \in \mathbb{C} \right\}$$

Notes

- If we allow Δ to contain arbitrary operators Δ_i , then the commutant set consists of diagonal matrices.
- Other sets of operators have other commutant sets; for example, time-invariant operators.

Scaled small-gain computation

Define the set

$$\mathbf{P}\boldsymbol{\Theta} = \left\{ \operatorname{diag}(\theta_1 I, \dots, \theta_d I) \; ; \; \theta_i > 0 \right\}$$

Theorem

The following are equivalent

(i) There exist $\Theta \in \Theta$ such that

$$\|\Theta M \Theta^{-1}\| < 1$$

(ii) There exist $\Theta \in \mathbf{P} \mathbf{\Theta}$ such that

 $M^* \Theta M - \Theta < 0$

17 - 25 LFTs and robustness

Scaled small-gain computation

The following are equivalent

(i) There exist $\Theta \in \Theta$ such that

 $\left\|\Theta M\Theta^{-1}\right\| < 1$

(ii) There exist $\Theta \in \mathbf{P}$ and X > 0 such that

$$\begin{bmatrix} A^*X + XA & XB \\ B^*X & -\Theta \end{bmatrix} + \begin{bmatrix} C^* \\ D^* \end{bmatrix} \Theta \begin{bmatrix} C & D \end{bmatrix} < 0$$

Proof

Follows from KYP lemma applied to

$$\Theta^{\frac{1}{2}} \hat{M} \Theta^{-\frac{1}{2}} = \left[\begin{array}{c|c} A & B \Theta^{-\frac{1}{2}} \\ \hline \Theta^{\frac{1}{2}} C & \Theta^{\frac{1}{2}} D \Theta^{-\frac{1}{2}} \end{array} \right]$$

Scaled small-gain computation

So far

If there exists $\Theta \in \Theta$ such that $\|\Theta M \Theta^{-1}\| < 1$, then the closed-loop is robustly stable.

Necessity

- Major question: is this condition necessary?
- Equivalently: if there does not exist such a Θ , is the system *not* robustly stable?

Major result:

- For arbitrary operators Δ_i , this condition is necessary.
- For more restrictive classes, such as LTI perturbations and scalar parameters, the condition is *not* necessary.