
17 - 1 LFTs and robustness S. Lall, Stanford. 2001.12.03.02

Engr210a Lecture 17: LFTs and robustness

• Additive perturbations

• General problem formulation

• Example of parametric uncertainty

• Small-gain theorem

• Interconnections

• Robust performance

• Linking robust performance and robust stability

• Diagonal perturbations

• Scaling

• Necessity
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Additive perturbations

Instead of trying to design a control system for Gn, try to design a controller that achieves
a specified level of performance for any G such that

‖G−Gnominal‖ < c

In other words, design a controller that will work for any G such that

G = Gnominal + ∆ for some ∆ with ‖∆‖ < c

This sounds reasonable, but leads to large uncertainty at small values of Ĝ(jω).
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Weighted additive uncertainty

Design a controller that achieves a specified level of performance for any G such that

G = Gnominal + W∆ for some ∆ with ‖∆‖ < c

Here W is a transfer function, chosen to be small at frequencies where the model is good,
and large elsewhere.
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Weighted additive uncertainty

Design a controller that achieves a specified level of performance for any G such that

G = Gnominal + W∆ for some ∆ with ‖∆‖ < c

We are therefore trying to do a control design for a set of systems, not just a single system.

This particular set is a ball in H∞. It is called a weighted additive uncertainty ball.
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We can also represent this as the above linear-fractional transformation.

Here the system G =

[
0 I
W G

]
is called the generalized plant.
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General problem setup

We will consider the general problem

w
qp

z
y u

P

K

¢

Interpretation

• ∆ is the model uncertainty.

• z is a signal we would like to keep small

• w represents external disturbances
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Example

m

u

x

The equation of motion is

ẍ(t) +
c

m
ẋ +

k

m
x =

u

m

Parametric uncertainty

• Suppose we know m within 10%, c within 20%, and k within 30%.

m = mn(1 + 0.1δm)

c = cn(1 + 0.2δc)

k = kn(1 + 0.3δk)

• Here |δm| ≤ 1, |δk| ≤ 1, |δc| ≤ 1.

• mn is called the nominal value of m, and δm is called the perturbation.
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Block-diagram

The equation of motion is

ẍ(t) +
c

m
ẋ +

k

m
x =

u

m

In block diagram form

ux

c

k

m
-1

-

+

s
-1

s
-1

Easy to verify that
1

m
=

1

mn(1 + 0.1δm)

= mn
−1 − 0.1mn

−1δm(1 + 0.1δm)−1

= S(J, δm)

where J =

[
m−1
n −0.1m−1

n

1 −0.1

]
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Block-diagram

With the perturbations we have

ux

c
n

±
c

±
m

0.2

0.3 ±
k

k
n

J -

+

+

+

s
-1

s
-1

where

J =

[
m−1
n −0.1m−1

n

1 −0.1

]
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Block-diagram

0.2

ux

p q

cn
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0.3
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kn
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State-space form

[
ẋ1

ẋ2

]
=

[
0 1

−knm−1
n −cnm−1

n

] [
x1

x2

]
+

[
0 0 0

−m−1
n −m−1

n −0.1m−1
n

]q1

q2

q3

 +

[
0

m−1
n

]
u

p1

p2

p3

 =

0.3kn 0
0 0.2cn
−kn −cn

x +

 0 0 0
0 0 0
−1 −1 −0.1

q1

q2

q3

 +

0
0
1

u
y =

[
0 1
] [x1

x2

]
LFT representation

qp

y u
P

¢

• Note ∆ is block-diagonal.
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Small-gain theorem, version 2

qp M

¢

Assumptions

• M ∈ L(L2).

• ∆ ∈ L(L2).

Theorem

The closed-loop is input-output stable for all ∆ such that ‖∆‖ ≤ 1 if and only if ‖M‖ < 1.
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Small-gain theorem, version 2

The closed-loop is input-output stable for all ∆ such that ‖∆‖ ≤ 1 if and only if ‖M‖ < 1.

Proof

Recall the closed-loop is stable if and only if

Z =

[
I −∆
−M I

]−1

=

[
(I −∆M)−1 ∆(I −M∆)−1

(I −M∆)−1M (I −M∆)−1

]
is stable.

(if) We know ‖M∆‖ ≤ ‖M‖‖∆‖ < 1. Hence I −M∆ is invertible.

(only if) We need to show that

‖M‖ ≥ 1 =⇒ There exists ∆, ‖∆‖ ≤ 1, such that

I −M∆ is singular

For any M , ρ(MM ∗) = ‖M‖2 ≥ 1.

Let λ = ρ(MM ∗). Then since spec(MM ∗) is closed

λI −QQ∗ is singular

So choose ∆ = λ−1Q∗.
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Interconnecting uncertain systems

Block-diagonal uncertainty arises

• From uncertain parameters

• From interconnected uncertain subsystems

Example: cascade

P
2

P
1

¢
2

¢
1

This can be written as an LFT on

[
∆1 0
0 ∆2

]
.
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Robust performance

w
qp

z
y u

P

K

¢

The closed-loop map T : w 7→ z is a function T (∆, K).

Control objective

Find K to solve

minimize γ

subject to ‖T (∆, K)‖ ≤ γ for all ∆ with ‖∆‖ ≤ 1.

Often we have additional constraints, that ∆ be block-diagonal.
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Robust performance

w
qp

z
y u

P

K

¢

Worst-case interpretation

Find K to solve

minimize γ

subject to max
{
‖T (∆, K)‖ ; ‖∆‖ ≤ 1

}
≤ γ
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Robust performance and robust stability

qp

z w
M

¢
1

Interconnection

z = S(M,∆1)w = (M22 + M21∆(I −M11∆)−1M12)w

Theorem

max
{
‖S(M,∆1)‖ ; ‖∆1‖ ≤ 1

}
< 1 ⇐⇒

M

¢
1

¢
2

is input-output stable

for all ∆, block-diagonal, ‖∆‖ ≤ 1
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Robust performance and robust stability

Define the set

∆ =

{[
∆1 0
0 ∆2

]
; ‖∆1‖ ≤ 1, ‖∆2‖ ≤ 1

}
Then the following are equivalent

(i) I −M11∆1 is invertible and ‖S(M,∆1)‖ < 1 for all ∆1 with ‖∆1‖ ≤ 1.

(ii) I −M∆ is invertible for all ∆ with ‖∆‖ ≤ 1.

Notes

• (i) is a robust performance specification

• (ii) is a robust stability specification.
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Proof

We want to prove that the following are equivalent

(i) I −M11∆1 is invertible and ‖S(M,∆1)‖ < 1 for all ∆1 with ‖∆1‖ ≤ 1.

(ii) I −M∆ is invertible for all ∆ with ‖∆‖ ≤ 1.

First we show (i) =⇒ (ii)

• We know

I −M∆ = I −
[
M11 M12

M21 M22

] [
∆1 0
0 ∆2

]
=

[
I −M11∆1 −M12∆2

−M21∆1 I −M22∆2

]
• Hence

I −M∆ =

[
I 0

−M21∆1(I −M11∆1)−1 I

] [
I −M11∆1 −M12∆2

0 I − S̄(M,∆1)∆2

]
Hence I −M∆ is nonsingular if I − S̄(M,∆1)∆2 is nonsingular.

• This follows by assumption that ‖S̄(M,∆1)‖ < 1.
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Proof

We want to prove that the following are equivalent

(i) I −M11∆1 is invertible and ‖S(M,∆1)‖ < 1 for all ∆1 with ‖∆1‖ ≤ 1.

(ii) I −M∆ is invertible for all ∆ with ‖∆‖ ≤ 1.

We now show (ii) =⇒ (i)

• Choose ∆ =

[
∆1 0
0 0

]
with ‖∆1‖ ≤ 1. Then

I −M∆ =

[
I −M11∆1 0
−M21∆1 I

]
is nonsingular

by assumption, hence I −M11∆1 is nonsingular for all ∆1 with ‖∆1‖ ≤ 1.

• For all ∆ with ‖∆‖ ≤ 1, we have

I −M∆ =

[
I 0

−M21∆1(I −M11∆1)−1 I

] [
I −M11∆1 −M12∆2

0 I − S̄(M,∆1)∆2

]
is nonsingular.

• Hence by the small gain theorem, ‖S̄(M,∆1)‖ < 1 for all ∆1 with ‖∆1‖ ≤ 1.
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Diagonal perturbations and the small-gain theorem

We are interested in diagonal perturbations of the form

∆ =
{

diag(∆1, . . . ,∆d) ; ∆i ∈ L(L2), ‖∆i‖ ≤ 1
}

qp M

¢

Notes

• ‖M‖ < 1 if and only if the closed-loop is stable for all ‖∆‖ ≤ 1.

• But we have a limited class of ∆; those in ∆.

• Clearly ‖M‖ < 1 implies stability.

• What about necessity?
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Scaling the small-gain theorem

Diagonal perturbations

∆ =
{

diag(∆1, . . . ,∆d) ; ∆i ∈ L(L2), ‖∆i‖ ≤ 1
}

Define the set of operators

Θ =
{

Θ ∈ L(L2), Θ is invertible, Θ∆ = ∆Θ for all ∆ ∈∆
}

This set is called the commutant of ∆.

Notes

• If Θ commutes with ∆, then so does Θ−1.

• We have

I −M∆ is invertible

⇐⇒ I − Θ−1ΘM∆ is invertible

⇐⇒ I − ΘM∆Θ−1 is invertible

⇐⇒ I − ΘMΘ−1∆ is invertible

• Scaled small-gain test: Robust stability if ‖ΘMΘ−1‖ < 1 for some Θ ∈ Θ.
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Scaled small-gain theorem

Suppose there exists Θ ∈ Θ such that

‖ΘMΘ−1‖ < 1

then the closed-loop is robustly input-output stable.

Feedback interpretation

M

¢ £
-1

£

M

¢

£
-1

£
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The commutant set

For diagonal perturbations

∆ =
{

diag(∆1, . . . ,∆d) ; ∆i ∈ L(L2), ‖∆i‖ ≤ 1
}

The commutant set is

Θ =
{

diag(θ1I, . . . , θdI) ; θi ∈ C
}

Notes

• If we allow ∆ to contain arbitrary operators ∆i, then the commutant set consists of
diagonal matrices.

• Other sets of operators have other commutant sets; for example, time-invariant op-
erators.
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Scaled small-gain computation

Define the set
PΘ =

{
diag(θ1I, . . . , θdI) ; θi > 0

}
Theorem

The following are equivalent

(i) There exist Θ ∈ Θ such that
‖ΘMΘ−1‖ < 1

(ii) There exist Θ ∈ PΘ such that

M ∗ΘM − Θ < 0
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Scaled small-gain computation

The following are equivalent

(i) There exist Θ ∈ Θ such that
‖ΘMΘ−1‖ < 1

(ii) There exist Θ ∈ P and X > 0 such that[
A∗X + XA XB

B∗X −Θ

]
+

[
C∗

D∗

]
Θ
[
C D

]
< 0

Proof

Follows from KYP lemma applied to

Θ
1
2M̂Θ−

1
2 =

[
A BΘ−

1
2

Θ
1
2C Θ

1
2DΘ−

1
2

]
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Scaled small-gain computation

So far

If there exists Θ ∈ Θ such that ‖ΘMΘ−1‖ < 1, then the closed-loop is robustly stable.

Necessity

• Major question: is this condition necessary?

• Equivalently: if there does not exist such a Θ, is the system not robustly stable?

Major result:

• For arbitrary operators ∆i, this condition is necessary.

• For more restrictive classes, such as LTI perturbations and scalar parameters, the
condition is not necessary.


