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Engr210a Lecture 17: LFTs and robustness

e Additive perturbations

e General problem formulation

e Example of parametric uncertainty

e Small-gain theorem

e Interconnections

e Robust performance

e Linking robust performance and robust stability
e Diagonal perturbations

e Scaling

e Necessity
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Additive perturbations

Instead of trying to design a control system for (G,,, try to design a controller that achieves
a specified level of performance for any GG such that

HG — Gnominal” <cC

In other words, design a controller that will work for any GG such that

G = Grominal + A for some A with ||[A|| < ¢

This sounds reasonable, but leads to large uncertainty at small values of C?(jw).

singular values versus frequency

—— Uncertainty ball
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Weighted additive uncertainty
Design a controller that achieves a specified level of performance for any G such that

G = Ghominal + WA for some A with ||A]| < ¢

Here TV is a transfer function, chosen to be small at frequencies where the model is good,
and large elsewhere.

singular values versus frequency
T

— Uncertainty ball
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Weighted additive uncertainty
Design a controller that achieves a specified level of performance for any G such that

G = Grominal = WA for some A with ||A]| < ¢

We are therefore trying to do a control design for a set of systems, not just a single system.

This particular set is a ball in H.. It is called a weighted additive uncertainty ball.

A

G.

A

0 [
y<7WG<7U

We can also represent this as the above linear-fractional transformation.

0 I

Here the system G = [W G

] is called the generalized plant.
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General problem setup

We will consider the general problem

» A
p < q
Z «—— P -« W
Y < U
» K

Interpretation
e A is the model uncertainty.
e 2 is a signal we would like to keep small

e w represents external disturbances
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Example
AN .
o m -
]
o
The equation of motion is
c k U
E(t)+—2+ —r = —
m m m

Parametric uncertainty

e Suppose we know m within 10%, ¢ within 20%, and k within 30%.

m = my(1 + 0.16,,)
c = cp(140.2,)
k= kn<1 + 035k>

e Here |§,,| <1,

o] <1, 10, < 1.

e m,, is called the nominal value of m, and 9,, is called the perturbation.
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Block-diagram

The equation of motion is

c. k U
E(t)+ —t+ —v = —
m m m
In block diagram form
T < s < s « m’ - U
> C >
» k
_ 1 1 m, ! —O.lm;jL
Easy to verify that — = where J =
m my(1 4+ 0.16,,) 1 —0.1

= m, "t — 0.1m, 10, (1 4 0.16,,) "
— §<J7 5m)
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Block-diagram

With the perturbations we have

-1 -1
T « S |« S «
J
> 6,
C 1>t
" 3 A
> 0.2 » &,
k, >+
» 0.3 — 0, J

where

|

m 1 —0.1m,

|

S. Lall, Stanford. 2001.12.03.02
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Block-diagram

0,
e 6{1
> m
p q
-1 1
I < S |« S |« < <« U
J A-
Y
» C, >+
A
0.2 <
Y
- I, >3
0.3 «
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State-space form

_qg_
D1 | 0.3k, 0 0 0 0 | [a] [O
P2l = 0 02,|x+ 110 0 0 | + |0 u
| D3 | _—kn —Cp | _—1 —1 —0.1_ 43 _1_

LFT representation

e Note A is block-diagonal.
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Small-gain theorem, version 2

\ 4
>

Assumptions
o M € £<L2>
o A c E(LQ)

Theorem

The closed-loop is input-output stable for all A such that ||A|| < 1ifand only if ||[M|| < 1.
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Small-gain theorem, version 2

The closed-loop is input-output stable for all A such that ||A]| < 1ifand onlyif | M| < 1.

Proof
Recall the closed-loop is stable if and only if

, [ I —A]l B [ (I —AM)™ Al — MA)™
“|-M T | T |(I-MATM (I-MA)!

is stable.

(if) We know || MA|| < ||M]||||A|| < 1. Hence I — M A is invertible.

(only if) We need to show that
| M| > 1 — There exists A, ||A|| <1, such that
I — MA is singular
For any M, p(MM*) = ||M]|* > 1.
Let A = p(M M*). Then since spec(M M*) is closed
M — QQ" is singular
So choose A = \71Q*.
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Interconnecting uncertain systems

Block-diagonal uncertainty arises

e From uncertain parameters

e From interconnected uncertain subsystems

Example: cascade

\ 4
>
\ 4

>

P, P,

This can be written as an LFT on Ap 0 .
0 As
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Robust performance

» A
p < q
Z P « W
Yy < u
» K

The closed-loop map T': w + z is a function T(A, K).

Control objective
Find K to solve

minimize -y

subject to ||T(A, K)|| <~ for all A with ||A|| < 1.

Often we have additional constraints, that A be block-diagonal.

S. Lall, Stanford. 2001.12.03.02
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Robust performance

» A
p < q
Z P « W
Yy < u
» K

Worst-case interpretation
Find K to solve
minimize -y

subject to max{[|T(A, K)|| 5 A <1} <+
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Robust performance and robust stability

> A1

Interconnection
< = g(M, A1>w = (MQQ + M21A<[ — M11A>_1M12>w

Theorem

max{H?(M,Al)H; 1A,]] < 1} <1 =

Is input-output stable

for all A, block-diagonal, ||A|| <1
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Robust performance and robust stability

JANE 0
A:{[01 AJ A < 1A gl}

Then the following are equivalent

Define the set

(i) I — My A is invertible and ||S(M, A1)|] < 1 for all Ay with ||A|| < 1.
(ii) I — MA is invertible for all A with ||A]| < 1.

Notes
e (i) is a robust performance specification

e (ii) is a robust stability specification.
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Proof

We want to prove that the following are equivalent

(i) I — My A is invertible and ||S(M, A1)|] < 1 for all A; with ||Aq|| < 1.
(i) I — MA is invertible for all A with ||A[] < 1.

First we show (i) = (ii)

e We know

My M| [Ar 0O I — MpAy —MppAg
I — MA=1-— =
[le Mzz] [0 AQ] [ — My T — M22A2]

e Hence

I MA — I o] [[ — My =M, ]

[—MglAl([ — MHAl)_l 1 0 I — S(M, Al)AQ
Hence I — MA is nonsingular if I — S(M, Ay)A; is nonsingular.
e This follows by assumption that ||S(M, A1)|| < 1.
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Proof

We want to prove that the following are equivalent

(i) I — My A is invertible and ||S(M, A1)|] < 1 for all A; with ||Aq|| < 1.
(i) I — MA is invertible for all A with ||A[] < 1.

We now show (ii) = (i)

e Choose A = [AOl 8] with [|A¢]| < 1. Then
| L= MnA; 0f. .
I — MA = [ YN [] is nonsingular

by assumption, hence I — M;14\ is nonsingular for all Ay with [|A]] < 1.

e For all A with ||A]| <1, we have

I o] [1 — My Ay — M5\

I—MA= [—Mglﬁl(] — M11A1>_1 I 0 I — S(M, Al)AQ

is nonsingular.

e Hence by the small gain theorem, ||S(M, A)|| < 1 for all Aj with ||Aq]] < 1.
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Diagonal perturbations and the small-gain theorem

We are interested in diagonal perturbations of the form

A = {ding(Ar,. A0 s A€ L(Ly), ] <1

> A

Notes

e ||M|| < 1if and only if the closed-loop is stable for all ||A|| < 1.
e But we have a limited class of A; those in A.
e Clearly || M| < 1 implies stability.

e What about necessity?
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Scaling the small-gain theorem

Diagonal perturbations
A = {ding(Ar,. A0 s A€ L(Ly), ] <1
Define the set of operators

O = {@ € L(Ly), O is invertible, OA = AO for all A € A}

This set is called the commutant of A.

Notes

e If © commutes with A, then so does O~ 1,

e We have

I — MA is invertible
I — O 'OMA is invertible
I —OMAO ! is invertible
I —OMO A is invertible

11

e Scaled small-gain test: Robust stability if ||©MO~ | < 1 for some © € ©.
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Scaled small-gain theorem
Suppose there exists © € © such that
oMo <1

then the closed-loop is robustly input-output stable.

Feedback interpretation
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The commutant set

For diagonal perturbations

A = {ding(Ar,. A0 s A€ L(Ly), ] <1

The commutant set is

O — {diag(@ll, D) 6 e @}

Notes

e If we allow A to contain arbitrary operators A\;, then the commutant set consists of
diagonal matrices.

e Other sets of operators have other commutant sets; for example, time-invariant op-
erators.
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Scaled small-gain computation

Define the set
PO — {diag(@ll, 0D 6> o}

Theorem

The following are equivalent

(i) There exist © € © such that
oMo <1

(i) There exist © € PO such that
MOM -6 <0
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Scaled small-gain computation

The following are equivalent

(i) There exist © € © such that
oMo <1

(ii) There exist © € P and X > 0 such that

A X+ XA XB O
[ B Y _@]+[D*]@[C D] <0
Proof
Follows from KYP lemma applied to
QINO T —
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Scaled small-gain computation

So far

If there exists © € O such that |[©MO~!|| < 1, then the closed-loop is robustly stable.
Necessity
e Major question: is this condition necessary?

e Equivalently: if there does not exist such a ©, is the system not robustly stable?

Major result:

e For arbitrary operators /\;, this condition is necessary.

e For more restrictive classes, such as LTI perturbations and scalar parameters, the
condition is not necessary.



