18 - 1 The structured singular value S. Lall, Stanford. 2001.12.03.03

Engr210a Lecture 18: The structured singular value

- Structure specifications
- LTI uncertainty
- Parametric uncertainty
- The structured singular value
- Upper and lower bounds
- The matrix structured singular value
- Computation

18 - 2 The structured singular value S. Lall, Stanford. 2001.12.03.03

Structure specifications

Define the set

$$\mathbf{C}\Delta = \left\{ \operatorname{diag}(\Delta_1, \dots, \Delta_d) ; \Delta_i \in \mathcal{L}(L_2) \right\}$$

The set $\mathbf{C}\Delta$ is called a *structure specification*.

Notes

• $\mathbf{C}\Delta$ is a convex cone.

18 - 3 The structured singular value S. Lall, Stanford. 2001.12.03.03

Linear time-invariant uncertainty

One common structure specification is

$$\mathbf{C}\Delta_{\mathsf{TI}} = \left\{ \Delta = \operatorname{diag}(\Delta_1, \dots, \Delta_d) \; ; \; \Delta \in \mathcal{L}(L_2), \Delta \text{ is LTI} \right\}$$

The commutant set is

$$\mathbf{\Theta_{TI}} = \left\{\Theta \in \mathcal{L}(L_2) \; ; \; \Theta \; \text{is nonsingular and LTI}, \\ \hat{\Theta}(s) = \operatorname{diag} \left(\hat{\theta}_1(s)I, \ldots, \hat{\theta}_d(s)I\right) \right\}$$

Interpretation

- ullet Δ is linear time-invariant uncertainty.
- ullet Δ represents *unmodeled* dynamics. Examples include
 - model reduction
 - modeling assumptions; e.g. rigidity in a structure
 - spatial discretization of continuum mechanics
- Commutant contains only LTI operators, since the delay is in $C\Delta_{TI}$.

18 - 4 The structured singular value S. Lall, Stanford. 2001.12.03.03

Parametric uncertainty

Consider the set of matrices

$$\mathbf{C}\Delta_{\mathsf{s},\mathsf{f}} = \left\{ \Delta = \operatorname{diag}(\delta_1 I_{m_1}, \dots, \delta_s I_{m_s}, \Delta_{s+1}, \dots, \Delta_{s+f}) \; ; \; \delta_i \in \mathbb{C}, \; \Delta_k \in \mathbb{C}^{m_k \times m_k} \right\}$$

Interpretation

- s = no. of scalar blocksf = no. of full blocks
- ullet Δ represents unknown parameters in the system.

Perturbation notation

$$\mathbf{C}\Delta_{\mathsf{s},\mathsf{f}} = \left\{ \Delta = \operatorname{diag}(\delta_1 I_{m_1}, \dots, \delta_s I_{m_s}, \Delta_{s+1}, \dots, \Delta_{s+f}) \; ; \; \delta_k \in \mathbb{C}, \; \Delta_k \in \mathbb{C}^{m_k \times m_k} \right\}$$
$$\Delta_{\mathsf{s},\mathsf{f}} = \left\{ \Delta \in \mathbf{C}\Delta_{\mathsf{s},\mathsf{f}} \; ; \; \|\Delta\| \leq 1 \right\}$$

Commutant notation

$$\mathbf{\Theta}_{\mathsf{s},\mathsf{f}} = \left\{ \mathrm{diag} \big(\Theta_1, \dots, \Theta_s, \theta_{s+1} I, \dots, \theta_{s+f} I \big) \text{ nonsingular } ; \ \Theta_k \in \mathbb{C}^{m_k \times m_k}, \ \theta_k \in \mathbb{C} \right\}$$

$$\mathbf{P}\mathbf{\Theta}_{\mathsf{s},\mathsf{f}} = \left\{ \Theta \in \mathbf{\Theta}_{\mathsf{s},\mathsf{f}} \ ; \ \Theta = \Theta^*, \ \Theta > 0 \right\}$$

18 - 5 The structured singular value S. Lall, Stanford. 2001.12.03.03

The structured singular value

Define the following function

$$\mu(M, \boldsymbol{\Delta}) = \frac{1}{\inf \Big\{ \|\Delta\| \; ; \; \Delta \in \mathbf{C}\boldsymbol{\Delta}, \; I - M\Delta \text{ is singular} \Big\}}$$

Interpretation

- $\bullet \ \ \mu(M, \Delta) = \frac{1}{\inf\{\text{norm of destabilizing perturbations in } \mathbf{C}\Delta\}}$
- $\mu(M, \Delta)$ depends on the operator M and the structure specification $\mathbf{C}\Delta$.

Properties

- $\mu(\alpha M, \Delta) = |\alpha| \mu(M, \Delta)$ for all $\alpha \in \mathbb{C}$.
- ullet For general structure specifications $oldsymbol{\Delta}$, $\mu(M, oldsymbol{\Delta})$ is not a norm on M, since it does not satisfy the triangle inequality.

18 - 6 The structured singular value S. Lall, Stanford. 2001.12.03.03

Stability

$$Z = \begin{bmatrix} I & -M \\ -\Delta & I \end{bmatrix}^{-1}$$

$$= \begin{bmatrix} (I - M\Delta)^{-1} & M(I - \Delta M)^{-1} \\ (I - \Delta M)^{-1} & (I - \Delta M)^{-1} \end{bmatrix}$$

Definitions

- If Δ, M are state-space systems, then the loop is called *internally-stable* if the states tend to zero.
- If $\Delta, M \in RH_{\infty}$, then the loop is called *input-output stable* if $Z \in RH_{\infty}$. This is equivalent to internal stability for stabilizable and detectable M, Δ .
- If $\Delta, M \in \mathcal{L}(L_2)$ then the loop is called well-connected if $Z \in \mathcal{L}(L_2)$.

The structured singular value

Suppose $\mathbf{C}\Delta\subseteq\mathcal{L}(L_2)$ is a convex cone. Define

$$\mu(M, \boldsymbol{\Delta}) = \frac{1}{\inf \Big\{ \|\Delta\| \; ; \; \Delta \in \mathbf{C}\boldsymbol{\Delta}, \; I - M\Delta \text{ is singular} \Big\}}$$

Recall the norm-bounded perturbation set

$$\mathbf{\Delta} = \left\{ \Delta \in \mathbf{C}\mathbf{\Delta} \; ; \; \|\Delta\| \le 1 \right\}$$

Robust well-connectedness

Sufficient condition

$$\mu(M, \Delta) < 1 \qquad \Longrightarrow \qquad I - M\Delta \text{ is nonsingular for all } \Delta \in \Delta$$

Necessary condition

$$\mu(M, \mathbf{\Delta}) \leq 1 \qquad \Longleftrightarrow \qquad I - M\Delta \text{ is nonsingular for all } \Delta \in \mathbf{\Delta}$$

18 - 8 The structured singular value S. Lall, Stanford. 2001.12.03.03

One scalar uncertainty block

Consider the uncertainty ball

$$\Delta_{\text{scalar}} = \left\{ \delta I \; ; \; \delta \in \mathbb{C}, \; |\delta| \le 1 \right\}$$

We have

$$\begin{split} \mu(M, \boldsymbol{\Delta}_{\text{scalar}}) &= \frac{1}{\inf \Big\{ |\delta| \; ; \; \delta \in \mathbb{C}, \; I - M \delta \text{ is singular} \Big\}} \\ &= \sup \Big\{ |\delta^{-1}| \; ; \; \delta \in \mathbb{C}, \; \delta^{-1}I - M \text{ is singular} \Big\} \\ &= \sup \Big\{ |\lambda| \; ; \; \lambda \in \mathbb{C}, \; \lambda I - M \text{ is singular} \Big\} \\ &= \rho(M) \end{split}$$

For uncertainty with one scalar uncertainty block, the structure singular value is equal to the spectral radius.

18 - 9 The structured singular value S. Lall, Stanford. 2001.12.03.03

One full uncertainty block

Consider the uncertainty ball

$$\Delta_{\mathsf{full}} = \left\{ \Delta \; ; \; \Delta \in \mathcal{L}(L_2), \; \|\Delta\| \le 1 \right\}$$

We have

$$\begin{split} \mu(M, \boldsymbol{\Delta}_{\mathsf{full}}) &= \frac{1}{\inf \Big\{ \|\Delta\| \; ; \; \Delta \in \mathbf{C} \boldsymbol{\Delta}_{\mathsf{full}}, \; I - M \Delta \; \mathsf{is \; singular} \Big\}} \\ &= \sup \Big\{ \|\Delta\|^{-1} \; ; \; \Delta \in \mathcal{L}(L_2), \; I - M \Delta \; \mathsf{is \; singular} \Big\} \\ &= \|M\| \end{split}$$

For uncertainty with one full uncertainty block, the structure singular value is equal to the operator norm.

General uncertainty

- ullet For any uncertainty specification, $\Delta_{\mathsf{scalar}} \subseteq \Delta \subseteq \Delta_{\mathsf{full}}.$
- Hence $\rho(M) \leq \mu(M, \Delta) \leq \|M\|$.

An upper-bound for the structured singular value

Commutant property

For any $\Delta \in \Delta$, we have

$$\Theta \Delta = \Delta \Theta$$
 for all $\Theta \in \Theta$

Hence, as before

$$I-M\Delta$$
 is invertible \iff $I-\Theta M\Theta^{-1}\Delta$ is invertible

Hence, for any $\Theta \in \mathbf{\Theta}$,

$$\mu(M, \mathbf{\Delta}) = \mu(\Theta M \Theta^{-1}, \mathbf{\Delta})$$

An upper bound for μ

$$\mu(M, \mathbf{\Delta}) \le \inf \left\{ \mu(\Theta M \Theta^{-1}, \mathbf{\Delta}) \; ; \; \Theta \in \mathbf{\Theta} \right\}$$
$$\le \inf \left\{ \|\Theta M \Theta^{-1}\| \; ; \; \Theta \in \mathbf{\Theta} \right\}$$

Hence $\mu(M, \Delta) < 1$ if

there exists $\Theta \in \mathbf{P}\Theta$ such that $M^*\Theta M - \Theta < 0$

18 - 11 The structured singular value S. Lall, Stanford. 2001.12.03.03

The matrix structured singular value

Let $M \in \mathbb{C}^{m \times m}$, and $\Delta \subseteq \mathbb{C}^{m \times m}$. Also

$$\mathbf{C}\Delta_{\mathsf{s},\mathsf{f}} = \left\{ \Delta = \operatorname{diag}(\delta_{1}I_{m_{1}}, \dots, \delta_{s}I_{m_{s}}, \Delta_{s+1}, \dots, \Delta_{s+f}) \; ; \; \delta_{i} \in \mathbb{C}, \; \Delta_{k} \in \mathbb{C}^{m_{k} \times m_{k}} \right\}$$

$$\Delta_{\mathsf{s},\mathsf{f}} = \left\{ \Delta \in \mathbf{C}\Delta_{\mathsf{s},\mathsf{f}} \; ; \; \|\Delta\| \leq 1 \right\}$$

$$\Theta_{\mathsf{s},\mathsf{f}} = \left\{ \operatorname{diag}(\Theta_{1}, \dots, \Theta_{s}, \theta_{s+1}I, \dots, \theta_{s+f}I) \; ; \; \Theta_{k} \in \mathbb{C}^{m_{k} \times m_{k}}, \; \theta_{k} \in \mathbb{C} \right\}$$

Bounds on μ

 $\mu(M, \boldsymbol{\Delta}_{\mathsf{s},\mathsf{f}}) < 1$ if and only if

there does not exist $\Delta \in \Delta_{s,f}$ such that $I - M\Delta$ is singular

which holds if and only if

there does not exist $\Delta \in \mathbf{\Delta}_{s,f}$ and $q \in \mathbb{C}^n$ such that $M\Delta q = q$

18 - 12 The structured singular value S. Lall, Stanford. 2001.12.03.03

The matrix structured singular value

$$\mathbf{C}\Delta_{\mathsf{s},\mathsf{f}} = \left\{ \Delta = \operatorname{diag}(\delta_1 I_{m_1}, \dots, \delta_s I_{m_s}, \Delta_{s+1}, \dots, \Delta_{s+f}) \; ; \; \delta_i \in \mathbb{C}, \; \Delta_k \in \mathbb{C}^{m_k \times m_k} \right\}$$

 $\mu(M, \Delta_{\mathsf{s},\mathsf{f}}) < 1$ if and only if

there does not exist $\Delta\in\mathbf{\Delta}_{s,f}$ and $q\in\mathbb{C}^n$ such that $M\Delta q=q$ which holds if and only if

there does not exist $\Delta \in \mathbf{\Delta}_{s,f}$ and $p,q \in \mathbb{C}^n$ such that p=Mq $q=\Delta p$

Partition

$$\Delta = \begin{bmatrix} \delta_1 I & & & \\ & \ddots & & \\ & & \delta_s & & \\ & & \Delta_{s+1} & \\ & & & & \Delta_{s+f} \end{bmatrix} \quad M = \begin{bmatrix} M_1 \\ \vdots \\ M_s \\ M_{s+1} \\ \vdots \\ M_{s+f} \end{bmatrix} \quad q = \begin{bmatrix} q_1 \\ \vdots \\ q_s \\ q_{s+1} \\ \vdots \\ q_{s+f} \end{bmatrix} \quad p = \begin{bmatrix} p_1 \\ \vdots \\ p_s \\ p_{s+1} \\ \vdots \\ p_{s+f} \end{bmatrix}$$

18 - 13 The structured singular value S. Lall, Stanford. 2001.12.03.03

The matrix structured singular value

Now $q = \Delta p$ if and only if

$$q_k = \delta_k p_k$$
 for $k = 1, \dots, s$
 $q_k = \Delta_k p_k$ for $k = s + 1, \dots, s + f$

Theorem

Given $q, p \in \mathbb{C}^m$, there exists a matrix $\Delta \in \mathbb{C}^{m \times m}$ with $||\Delta|| \leq 1$ such that

$$q = \Delta p$$

if and only if $p^*p - q^*q \ge 0$.

Proof

- *only if:* easy.
- *if:* Choose $\Delta = \frac{qp^*}{p^*p}$. Then

$$\|\Delta\|^2 = \|\Delta\Delta^*\| = \frac{\|qq^*\|}{\|p^*p\|} = \frac{\|q^*q\|}{\|p^*p\|}$$

Theorem

Given $q, p \in \mathbb{C}^m$, there exists $\delta \in \mathbb{C}$ with $|\delta| \leq 1$ such that

$$q = \delta p$$

if and only if $pp^* - qq^* \ge 0$.

Proof

- only if: $pp^* qq^* = pp^*(1 |\delta|^2) \ge 0$
- if: If $pp^* qq^* \ge 0$, then $\ker(p^*) \subset \ker(q^*)$.

Hence $image(p) \supset image(q)$.

Hence there exists $\delta \in \mathbb{C}$ such that

$$q = \delta p$$

Then since $pp^* - qq^* \ge 0$, we have $pp^*(1 - |\delta|^2) \ge 0$ which implies $|\delta| \le 1$.

18 - 15 The structured singular value S. Lall, Stanford. 2001.12.03.03

The matrix structured singular value

We have $\mu(M, \Delta_{s,f}) < 1$ if and only if

there does not exist $\Delta \in \mathbf{\Delta}_{\mathsf{s},\mathsf{f}}$ and $p,q \in \mathbb{C}^n$ such that

$$q_k = \delta_k p_k$$
 for $k = 1, \dots, s$
 $q_k = \Delta_k p_k$ for $k = s + 1, \dots, s + f$

Hence $\mu(M, \Delta_{s,f}) < 1$ if and only if

there does not exist $p,q\in\mathbb{C}^n$ such that $p_k=M_kq_k$ and

$$p_k p_k^* - q_k q_k^* \ge 0$$
 for $k = 1, ..., s$
 $p_k^* p_k - q_k^* q_k \ge 0$ for $k = s + 1, ..., s + f$

The matrix structured singular value

We have $\mu(M, \Delta_{s,f}) < 1$ if and only if

there does not exist $q \in \mathbb{C}^n$ such that

$$M_k q q^* M_k^* - q_k q_k^* \ge 0$$
 for $k = 1, ..., s$
 $q^* M_k^* M_k q - q_k^* q_k \ge 0$ for $k = s + 1, ..., s + f$

Define the functions

$$\Phi_k(q) = M_k q q^* M_k^* - q_k q_k^*$$

$$\phi_k(q) = q^* M_k^* M_k q - q_k^* q_k$$

and

$$\mathbf{\Phi}(q) = (\Phi_1(q), \dots, \Phi_s(q), \phi_{s+1}(q), \dots, \phi_{s+f}(q))$$

Then $\Phi: \mathbb{R}^n \to \mathbb{V}$ where

$$\mathbb{V} = \mathbb{H}^{m_1} \times \cdots \times \mathbb{H}^{m_s} \times \mathbb{R}^f$$

18 - 17 The structured singular value S. Lall, Stanford. 2001.12.03.03

The matrix structured singular value

We have $\mu(M, \Delta_{s,f}) < 1$ if and only if

there does not exist $q \in \mathbb{C}^n$ such that $\Phi(q) \geq 0$

Notes

ullet The *positive cone* in $\mathbb V$ is

$$\Pi_{\mathsf{s},\mathsf{f}} = \left\{ Y \in \mathbb{V} \; ; \; Y \ge 0 \right\}$$

$$= \left\{ \begin{aligned} Y &= \left(R_1, \dots, R_s, r_{s+1}, \dots, r_{s+f} \right) \; ; \; R_k \ge 0 \; \text{for} \; k = 1, \dots, s \\ r_k \ge 0 \; \text{for} \; k = s+1, \dots, s+f \end{aligned} \right\}$$

- Let $\nabla_{\mathsf{s},\mathsf{f}} = \mathrm{image}(\Phi)$.
- Then $\mu(M, \Delta_{s,f}) < 1$ if and only if

$$\nabla_{\mathsf{s},\mathsf{f}} \cap \Pi_{\mathsf{s},\mathsf{f}} = \emptyset$$

18 - 18 The structured singular value S. Lall, Stanford. 2001.12.03.03

The matrix structured singular value

 $\mu(M, \boldsymbol{\Delta}_{\mathsf{s},\mathsf{f}}) < 1$ if and only if

$$\nabla_{\mathsf{s},\mathsf{f}} \cap \Pi_{\mathsf{s},\mathsf{f}} = \emptyset$$

How to test if two sets are disjoint? A sufficient condition is that there exists a *separating hyperplane*. If the two sets are convex, this test is also necessary.

18 - 19 The structured singular value S. Lall, Stanford. 2001.12.03.03

The matrix structured singular value

Recall

$$\mathbb{V} = \mathbb{H}^{m_1} \times \cdots \times \mathbb{H}^{m_s} \times \mathbb{R}^f$$

and the *positive cone* in $\mathbb V$ is

$$\Pi_{\mathsf{s},\mathsf{f}} = \left\{ Y \in \mathbb{V} \; ; \; Y \ge 0 \right\}$$

$$= \left\{ Y = \left(R_1, \dots, R_s, r_{s+1}, \dots, r_{s+f} \right) \; ; \; R_k \ge 0 \; \text{for} \; k = 1, \dots, s \\ r_k \ge 0 \; \text{for} \; k = s+1, \dots, s+f \right\}$$

The inner product in \mathbb{V} is

$$\langle Y, R \rangle = \sum_{k=1}^{s} \operatorname{Trace}(Y_k R_K) + \sum_{k=s+1}^{s+f} y_k r_k$$

18 - 20 The structured singular value S. Lall, Stanford. 2001.12.03.03

The matrix structured singular value

We have $\mu(M, \Delta_{s,f}) < 1$ if and only if

$$\nabla_{\mathsf{s},\mathsf{f}} \cap \Pi_{\mathsf{s},\mathsf{f}} = \emptyset$$

The positive cone satisfies

$$Y \in \Pi_{s,f} \qquad \iff \qquad \langle Y, R \rangle \ge 0 \qquad \text{for all } R \in \Pi_{s,f}$$

Let $\bar{\Theta} = (\Theta_1, \dots, \Theta_s, \theta_{s+1}, \dots, \theta_{s+f})$. Then a separating hyperplane, defined by $\bar{\Theta}$, exists if and only if

$$\langle \bar{\Theta}, Y \rangle < 0$$
 for all $Y \in \nabla_{s,f}$

This condition is

$$\sum_{k=1}^s \operatorname{Trace} \left(\Theta_k(M_k q q^* M_k^* - q_k q_k^*)\right) + \sum_{k=s+1}^{s+f} \theta_k(q^* M_k^* M_k q - q_k^* q_k) < 0 \text{ for all } \Theta \in \nabla_{\mathsf{s},\mathsf{f}}$$

Rearrangement of this inequality shows that it is equivalent to

$$M^*\Theta M - \Theta < 0$$

for
$$\Theta = \operatorname{diag}(\Theta_1, \dots, \Theta_s, \theta_{s+1}, \dots, \theta_{s+f})$$
.

18 - 21 The structured singular value S. Lall, Stanford. 2001.12.03.03

Summary

• $\mu(M, \Delta_{s,f}) < 1$ if and only if

$$\nabla_{s,f} \cap \Pi_{s,f} = \emptyset$$

ullet There exists a separating hyperplane if and only if there exists $\Theta \in \Theta_{s,f}$ such that

$$M^*\Theta M - \Theta < 0$$

- Hence this condition is necessary and sufficient for robust well-connectedness when $\nabla_{s,f}$ is convex.
- Otherwise, it is only a sufficient condition.