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Engr210a Lecture 18: The structured singular value

• Structure specifications

• LTI uncertainty

• Parametric uncertainty

• The structured singular value

• Upper and lower bounds

• The matrix structured singular value

• Computation
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Structure specifications

qp M

¢

Define the set
C∆ =

{
diag(∆1, . . . ,∆d) ; ∆i ∈ L(L2)

}
The set C∆ is called a structure specification.

Notes

• C∆ is a convex cone.
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Linear time-invariant uncertainty

One common structure specification is

C∆TI =
{

∆ = diag(∆1, . . . ,∆d) ; ∆ ∈ L(L2),∆ is LTI
}

The commutant set is

ΘTI =
{

Θ ∈ L(L2) ; Θ is nonsingular and LTI, Θ̂(s) = diag
(
θ̂1(s)I, . . . , θ̂d(s)I

)}
Interpretation

• ∆ is linear time-invariant uncertainty.

• ∆ represents unmodeled dynamics. Examples include

• model reduction

• modeling assumptions; e.g. rigidity in a structure

• spatial discretization of continuum mechanics

• Commutant contains only LTI operators, since the delay is in C∆TI.
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Parametric uncertainty

Consider the set of matrices

C∆s,f =
{

∆ = diag
(
δ1Im1, . . . , δsIms,∆s+1, . . . ,∆s+f

)
; δi ∈ C, ∆k ∈ Cmk×mk

}
Interpretation

• s = no. of scalar blocks

f = no. of full blocks

• ∆ represents unknown parameters in the system.

Perturbation notation

C∆s,f =
{

∆ = diag
(
δ1Im1, . . . , δsIms,∆s+1, . . . ,∆s+f

)
; δk ∈ C, ∆k ∈ Cmk×mk

}
∆s,f =

{
∆ ∈ C∆s,f ; ‖∆‖ ≤ 1

}
Commutant notation

Θs,f =
{

diag
(
Θ1, . . . ,Θs, θs+1I, . . . , θs+fI

)
nonsingular ; Θk ∈ Cmk×mk, θk ∈ C

}
PΘs,f =

{
Θ ∈ Θs,f ; Θ = Θ∗, Θ > 0

}
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The structured singular value

Define the following function

µ(M,∆) =
1

inf
{
‖∆‖ ; ∆ ∈ C∆, I −M∆ is singular

}
Interpretation

• µ(M,∆) =
1

inf{norm of destabilizing perturbations in C∆}

• µ(M,∆) depends on the operator M and the structure specification C∆.

Properties

• µ(αM,∆) = |α|µ(M,∆) for all α ∈ C.

• For general structure specifications ∆, µ(M,∆) is not a norm on M , since it does
not satisfy the triangle inequality.
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Stability
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Z =

[
I −M
−∆ I

]−1

=

[
(I −M∆)−1 M(I −∆M)−1

(I −∆M)−1 (I −∆M)−1

]

Definitions

• If ∆,M are state-space systems, then the loop is called internally-stable if the states
tend to zero.

• If ∆,M ∈ RH∞, then the loop is called input-output stable if Z ∈ RH∞.

This is equivalent to internal stability for stabilizable and detectable M,∆.

• If ∆,M ∈ L(L2) then the loop is called well-connected if Z ∈ L(L2).
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The structured singular value

Suppose C∆ ⊆ L(L2) is a convex cone. Define

µ(M,∆) =
1

inf
{
‖∆‖ ; ∆ ∈ C∆, I −M∆ is singular

}
Recall the norm-bounded perturbation set

∆ =
{

∆ ∈ C∆ ; ‖∆‖ ≤ 1
}

Robust well-connectedness

Sufficient condition

µ(M,∆) < 1 =⇒ I −M∆ is nonsingular for all ∆ ∈∆

Necessary condition

µ(M,∆) ≤ 1 ⇐= I −M∆ is nonsingular for all ∆ ∈∆
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One scalar uncertainty block

Consider the uncertainty ball

∆scalar =
{
δI ; δ ∈ C, |δ| ≤ 1

}
We have

µ(M,∆scalar) =
1

inf
{
|δ| ; δ ∈ C, I −Mδ is singular

}
= sup

{
|δ−1| ; δ ∈ C, δ−1I −M is singular

}
= sup

{
|λ| ; λ ∈ C, λI −M is singular

}
= ρ(M)

For uncertainty with one scalar uncertainty block, the structure singular value is equal to
the spectral radius.
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One full uncertainty block

Consider the uncertainty ball

∆full =
{

∆ ; ∆ ∈ L(L2), ‖∆‖ ≤ 1
}

We have

µ(M,∆full) =
1

inf
{
‖∆‖ ; ∆ ∈ C∆full, I −M∆ is singular

}
= sup

{
‖∆‖−1 ; ∆ ∈ L(L2), I −M∆ is singular

}
= ‖M‖

For uncertainty with one full uncertainty block, the structure singular value is equal to the
operator norm.

General uncertainty

• For any uncertainty specification, ∆scalar ⊆∆ ⊆∆full.

• Hence ρ(M) ≤ µ(M,∆) ≤ ‖M‖.
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An upper-bound for the structured singular value

Commutant property

For any ∆ ∈∆, we have
Θ∆ = ∆Θ for all Θ ∈ Θ

Hence, as before

I −M∆ is invertible ⇐⇒ I − ΘMΘ−1∆ is invertible

Hence, for any Θ ∈ Θ,
µ(M,∆) = µ(ΘMΘ−1,∆)

An upper bound for µ

µ(M,∆) ≤ inf
{
µ(ΘMΘ−1,∆) ; Θ ∈ Θ

}
≤ inf

{
‖ΘMΘ−1‖ ; Θ ∈ Θ

}
Hence µ(M,∆) < 1 if

there exists Θ ∈ PΘ such that M ∗ΘM − Θ < 0
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The matrix structured singular value

Let M ∈ Cm×m, and ∆ ⊆ Cm×m. Also

C∆s,f =
{

∆ = diag
(
δ1Im1, . . . , δsIms,∆s+1, . . . ,∆s+f

)
; δi ∈ C, ∆k ∈ Cmk×mk

}
∆s,f =

{
∆ ∈ C∆s,f ; ‖∆‖ ≤ 1

}
Θs,f =

{
diag

(
Θ1, . . . ,Θs, θs+1I, . . . , θs+fI

)
; Θk ∈ Cmk×mk, θk ∈ C

}
Bounds on µ

µ(M,∆s,f) < 1 if and only if

there does not exist ∆ ∈∆s,f such that I −M∆ is singular

which holds if and only if

there does not exist ∆ ∈∆s,f and q ∈ Cn such that M∆q = q
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The matrix structured singular value

C∆s,f =
{

∆ = diag
(
δ1Im1, . . . , δsIms,∆s+1, . . . ,∆s+f

)
; δi ∈ C, ∆k ∈ Cmk×mk

}
µ(M,∆s,f) < 1 if and only if

there does not exist ∆ ∈∆s,f and q ∈ Cn such that M∆q = q

which holds if and only if

there does not exist ∆ ∈∆s,f and p, q ∈ Cn such that p = Mq

q = ∆p

Partition

∆ =


δ1I

. . .
δs

∆s+1
. . .

∆s+f

 M =


M1

...
Ms

Ms+1
...

Ms+f

 q =


q1
...
qs
qs+1

...
qs+f

 p =


p1
...
ps
ps+1

...
ps+f
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The matrix structured singular value

Now q = ∆p if and only if

qk = δkpk for k = 1, . . . , s

qk = ∆kpk for k = s + 1, . . . , s + f

Theorem

Given q, p ∈ Cm, there exists a matrix ∆ ∈ Cm×m with ‖∆‖ ≤ 1 such that

q = ∆p

if and only if p∗p− q∗q ≥ 0.

Proof

• only if: easy.

• if: Choose ∆ =
qp∗

p∗p
. Then

‖∆‖2 = ‖∆∆∗‖ =
‖qq∗‖
‖p∗p‖

=
‖q∗q‖
‖p∗p‖
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Theorem

Given q, p ∈ Cm, there exists δ ∈ C with |δ| ≤ 1 such that

q = δp

if and only if pp∗ − qq∗ ≥ 0.

Proof

• only if: pp∗ − qq∗ = pp∗(1− |δ|2) ≥ 0

• if: If pp∗ − qq∗ ≥ 0, then ker(p∗) ⊂ ker(q∗).

Hence image(p) ⊃ image(q).

Hence there exists δ ∈ C such that

q = δp

Then since pp∗ − qq∗ ≥ 0, we have pp∗(1− |δ|2) ≥ 0 which implies |δ| ≤ 1.
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The matrix structured singular value

We have µ(M,∆s,f) < 1 if and only if

there does not exist ∆ ∈∆s,f and p, q ∈ Cn such that

qk = δkpk for k = 1, . . . , s

qk = ∆kpk for k = s + 1, . . . , s + f

Hence µ(M,∆s,f) < 1 if and only if

there does not exist p, q ∈ Cn such that pk = Mkqk and

pkp
∗
k − qkq∗k ≥ 0 for k = 1, . . . , s

p∗kpk − q∗kqk ≥ 0 for k = s + 1, . . . , s + f
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The matrix structured singular value

We have µ(M,∆s,f) < 1 if and only if

there does not exist q ∈ Cn such that

Mkqq
∗M ∗

k − qkq∗k ≥ 0 for k = 1, . . . , s

q∗M ∗
kMkq − q∗kqk ≥ 0 for k = s + 1, . . . , s + f

Define the functions

Φk(q) = Mkqq
∗M ∗

k − qkq∗k
φk(q) = q∗M ∗

kMkq − q∗kqk
and

Φ(q) =
(
Φ1(q), . . . ,Φs(q), φs+1(q), . . . , φs+f(q)

)
Then Φ : Rn → V where

V = Hm1 × · · · ×Hms × Rf
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The matrix structured singular value

We have µ(M,∆s,f) < 1 if and only if

there does not exist q ∈ Cn such that Φ(q) ≥ 0

Notes

• The positive cone in V is

Πs,f =

{
Y ∈ V ; Y ≥ 0

}
=

{
Y =

(
R1, . . . , Rs, rs+1, . . . , rs+f

)
; Rk ≥ 0 for k = 1, . . . , s

rk ≥ 0 for k = s + 1, . . . , s + f

}

• Let ∇s,f = image(Φ).

• Then µ(M,∆s,f) < 1 if and only if

∇s,f ∩ Πs,f = ∅
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The matrix structured singular value

µ(M,∆s,f) < 1 if and only if
∇s,f ∩ Πs,f = ∅

Ís;f

rs;f

How to test if two sets are disjoint? A sufficient condition is that there exists a separating
hyperplane. If the two sets are convex, this test is also necessary.
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The matrix structured singular value

Recall
V = Hm1 × · · · ×Hms × Rf

and the positive cone in V is

Πs,f =

{
Y ∈ V ; Y ≥ 0

}
=

{
Y =

(
R1, . . . , Rs, rs+1, . . . , rs+f

)
; Rk ≥ 0 for k = 1, . . . , s

rk ≥ 0 for k = s + 1, . . . , s + f

}
The inner product in V is

〈Y,R〉 =

s∑
k=1

Trace(YkRK) +

s+f∑
k=s+1

ykrk
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The matrix structured singular value

We have µ(M,∆s,f) < 1 if and only if

∇s,f ∩ Πs,f = ∅

The positive cone satisfies

Y ∈ Πs,f ⇐⇒ 〈Y,R〉 ≥ 0 for all R ∈ Πs,f

Let Θ̄ = (Θ1, . . . ,Θs, θs+1, . . . , θs+f). Then a separating hyperplane, defined by Θ̄, exists
if and only if

〈Θ̄, Y 〉 < 0 for all Y ∈ ∇s,f

This condition is
s∑

k=1

Trace
(
Θk(Mkqq

∗M ∗
k − qkq∗k)

)
+

s+f∑
k=s+1

θk(q
∗M ∗

kMkq − q∗kqk) < 0 for all Θ ∈ ∇s,f

Rearrangement of this inequality shows that it is equivalent to

M ∗ΘM − Θ < 0

for Θ = diag(Θ1, . . . ,Θs, θs+1, . . . , θs+f).
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Summary

Ís;f

rs;f

• µ(M,∆s,f) < 1 if and only if
∇s,f ∩ Πs,f = ∅

• There exists a separating hyperplane if and only if there exists Θ ∈ Θs,f such that

M ∗ΘM − Θ < 0

• Hence this condition is necessary and sufficient for robust well-connectedness when
∇s,f is convex.

• Otherwise, it is only a sufficient condition.


