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Engr210a Lecture 2: Mathematical Preliminaries

• Recap intro on uncertain systems

• Subspaces, affine sets, convex sets, convex cones

• Hyperplanes and separating hyperplanes

• Matrix inequalities

• Schur complements
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Representing nonlinear systems

We can write any nonlinear system

ẋ(t) = f(x(t), u(t)) x(0) = 0

y(t) = g(x(t), u(t))

as a linear system G connected to a nonlinear system Q.

p q

Q

G
y u

We usually choose coordinates so that

f(0, 0) = 0 g(0, 0) = 0
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Example: Raleigh equation

ÿ − 2ζ(1 − αẏ2)ẏ + y = u

Define G by

ẋ(t) =

[
2ζ −1
1 0

]
x +

[−2ζα
0

]
q +

[
1
0

]
u

p(t) =
[
1 0

]
x(t)

y(t) =
[
0 1

]
x(t)

and Q by
q(t) = Q(p(t)) = p(t)3
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Replacing or Modeling Q

Q =
{

(p, q) : q = Q(p)
}

=
{

set of input-output signal pairs
}

Consider a set of maps

∆ =
{

∆ : {input-signals p} → {output signals q}
}

with the following property:

if (p, q) ∈ Q then there exists ∆ ∈ ∆ such that q = ∆(p).
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Using uncertain systems

If a property holds for each of the systems

p q

∆

G

y u

then it holds for the original system

p q

Q

G

y u
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Subspaces

Suppose V is a vector space. Then S ⊆ V is a subspace if

x, y ∈ S λ, µ ∈ R =⇒ λx + µy ∈ S

Geometrically: if x, y ∈ S then the plane through x, y, 0 is contained in S.

Representations

As the image of a linear operator A : U → V .

S = image (A)

= range (A)

Recall we say A is surjective if image(A) = V .

One may also represent a subspace as the span of a set of vectors

S = span{a1, a2, . . . , an}
= {λ1a1 + λ2a2 + · · · + λnan ; λi ∈ R}

In finite dimensions, A has a matrix representation A =
[
a1 a2 . . . an

]
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Subspace representations. . .

We can also represent S ⊆ V as the kernel of a linear operator B : V → U .

S = nullspace (B)

= ker (B)

= {x ∈ V ; Bx = 0}
Or as the set of vectors orthogonal to another set

S = {x ∈ V ; 〈b1, x〉 = 0, 〈b2, x〉 = 0, . . . , 〈bn, x〉 = 0}

Recall we say B is injective if ker(B) = {0}.
In finite dimensions, B has a matrix representation

B =




b1

b2
...
bn




and often in real Euclidean space 〈bi, x〉 = bT
i x.
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Affine Sets

Suppose V is a vector space. Then S ⊆ V is an affine set if

x, y ∈ S λ, µ ∈ R, λ + µ = 1 =⇒ λx + µy ∈ S

Geometrically: if x, y ∈ S then the line through x, y is contained in S.

x

yRepresentations

As the range of the affine function Au + b, where A : U → V

S = {Au + b ; u ∈ U}
As the solution to linear equations, where B : V → U

S = {x ; Bx = c}
Or, we can represent the linear equations as

S = {x ; 〈b1, x〉 = c1, 〈b2, x〉 = c2, . . . , 〈bn, x〉 = cn}
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Convex Sets

The set S ⊆ V is a convex set if

x, y ∈ S λ, µ ≥ 0, λ + µ = 1 =⇒ λx + µy ∈ S

Geometrically: S is convex if, given x, y ∈ S, the line segment L(x, y) ⊆ S

convex non-convex

x

y

The line segment

L(x, y) = {v ∈ V ; v = λx + µy for some λ, µ ≥ 0, λ + µ = 1}
= {v ∈ V ; v = θx + (1 − θ)y for some θ ∈ [0, 1]}

Representations

Ellipsoids, polyhedra, and many others. We will see more later in the course.
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Convex Cones

The set S ⊆ V is a convex cone if

x, y ∈ S λ, µ ≥ 0, =⇒ λx + µy ∈ S

Geometrically: S is convex if, given x, y ∈ S, the ‘pie slice’ between x and Y is
contained in S.

x

y
0

Representations

Many representations . . .
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Hyperplane

In an n dimensional vector space, an n − 1 dimensional affine set is called a hyperplane.

Representations

A linear mapping F : V → R is called a linear functional.

Given F , a hyperplane can be represented as the set of x ∈ V which satisfy

S = {x ; Fx = c}
Or, given a dual vector b,

S = {x ; 〈b, x〉 = c}
Think of b as the normal to S.

Halfspace

S = {x ; Fx ≤ c} or S = {x ; 〈b, x〉 ≤ c}
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Intersections

If Si is a subspace for all i ∈ I, then⋂
i∈I

Si is a subspace.

Similarly for affine sets, convex sets and convex cones.

Fact: Every closed convex set is the intersection of a (usually infinite) set of halfspaces.

In fact, if S is a closed convex set then

S =
⋂{

H ; H is a closed halfspace, and S ⊆ H
}

Example: A polyhedron is the intersection of finitely many halfspaces.
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Convex Hull

Given a subset S ⊆ V , the convex hull of S is the smallest convex set containing S.

Co(S) =
⋂{

C ⊆ V, C is convex, S ⊆ C
}

Given S = {x1, x2, . . . , xn},

Co(S) =
{

θ1x1 + θ2x2 + · · · + θnxn ;
n∑

i=1

θ1 = 1, θi ≥ 0
}

Example:
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Separating hyperplanes

Every hyperplane H ⊂ V always breaks V into two half-spaces, which have the form

{v ; F (v) ≤ a} and {v ; F (v) ≥ a}
Given two sets S, T ⊂ V , we say that the hyperplane separates S and T if

S ⊆ {v ; F (v) ≤ a} and T ⊆ {v ; F (v) ≥ a}

Separating Hyperplane Theorem:

If S and T are nonempty, convex and S ∩ T = ∅ then there exists a hyperplane which
separates S from T .

Stronger form: There exists a strictly separating hyperplane if and only if the sets are
strictly separated.



2 - 15 Mathematical Preliminaries 2001.10.08.01

The vector space of matrices

Linear functionals: Given Y ∈ R
n×n

F (X) = trace(Y ∗X) =
n∑

i,k=1

xikyik

is a linear functional on Rn×n. Every linear functional on Rn×n can be represented this
way.

Symmetric matrices

The set of symmetric matrices

S
n = {X ∈ R

n×n ; X = XT}
is a subspace of Rn×n.

Similarly, every linear functional on S
n is represented by

F (X) = trace(Y ∗X)

for some Y ∈ S
n.
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Eigenvectors of symmetric matrices

Suppose A ∈ R
n×n is symmetric, i.e. A = AT .

Theorem: The eigenvalues of A are real.

Proof: Suppose Ax = λx for x 
= 0. Then

λx∗x = x∗Ax = (Ax)∗x = λ∗x∗x

Since x∗x > 0 we can conclude that λ = λ∗.

Theorem: There is a set {q1, q2, . . . , qn} of n orthonormal eigenvectors of A, which
satisfy

Aqi = λiqi, q∗i qj = δij

In matrix form, there is an orthogonal matrix U such that

U−1AU = U ∗AU = Λ

hence we can express A as

A = UΛU ∗ =
n∑

i=1

λiqiq
∗
i
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Matrix Inequalities

The set of Hermitian matrices

H
n = {A ∈ R

n×n ; A = A∗}
is a subspace of Rn×n.

We say A is positive semidefinite if x∗Ax ≥ 0 for all x ∈ Cn.

• Write this as A ≥ 0.

• A ≥ 0 if and only if λi(A) ≥ 0 for all i.

We say A is positive definite if x∗Ax > 0 for all x ∈ C
n.

• Write this as A > 0.

• A > 0 if and only if λi(A) > 0 for all i.

We say A is negative definite, written A < 0, if −A > 0.

Similarly for negative semidefinite.

We say A > B if A − B > 0.

Otherwise A is called indefinite.
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Positive definiteness

• If Q > 0 and A ∈ C
n×m, then A∗QA ≥ 0. If ker(A) = 0, then A∗QA > 0.

• If Q1, Q2 ≥ 0 and µ1, µ2 ≥ 0, then µ1Q1 + µ2Q2 ≥ 0. This implies that the set of
positive definite matrices is a convex cone.

The Schur complement formula

Suppose Q, M and R are matrices and that M and Q are Hermitian. Then the following
are equivalent:

(a) The matrix inequalities Q > 0 and

M − RQ−1R∗ > 0 both hold.

(b) The matrix inequality [
M R
R∗ Q

]
> 0 is satisfied.
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Proof of the Schur complement formula

The two inequalities listed in (a) are equivalent to the single block inequality.[
M − RQ−1R∗ 0

0 Q

]
> 0 .

Now left- and right-multiply this inequality by the nonsingular matrix[
I RQ−1

0 I

]

and its adjoint, respectively, to get[
M R
R∗ Q

]
=

[
I RQ−1

0 I

]
·
[
M − RQ−1R∗ 0

0 Q

] [
I 0

Q−1R∗ I

]
> 0.

Therefore inequality (b) holds if and only if (a) holds.


