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Engr210a Lecture 2: Mathematical Preliminaries

e Recap intro on uncertain systems

e Subspaces, affine sets, convex sets, convex cones

e Hyperplanes and separating hyperplanes

e Matrix inequalities

e Schur complements
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Representing nonlinear systems

We can write any nonlinear system

o(t) = f(x(t),ut))  2(0)=0
y(t) = glx(t), ult))

as a linear system (G connected to a nonlinear system ().

Q

Y -—— - q

We usually choose coordinates so that

f<070>:0 g<070):
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Example: Raleigh equation

j—20(1—ag’)y+y=u

2 dwdt

Define GG by

and () by
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Replacing or Modeling ()
Qz{@ﬂ%qu@%
= {set of input-output signal pairs}

Consider a set of maps

A = {A - {input-signals p} — {output signals C]}}

with the following property:

if (p,q) € Q then there exists A € A such that ¢ = A(p).
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Using uncertain systems

If a property holds for each of the systems

A

p q
G

y - -
then it holds for the original system

Q

p q
G




2 -6 Mathematical Preliminaries 2001.10.08.01
Subspaces

Suppose V' is a vector space. Then S C V is a subspace if
r,y €S A€ R — e+ py €5

Geometrically: if x,y € S then the plane through .y, 0 is contained in S.

Representations

As the image of a linear operator A : U — V.
S = image (A)
= range (A)
Recall we say A is surjective if image(A) = V.
One may also represent a subspace as the span of a set of vectors
S = span{ay, as,...,a,}

:{)\1G1+)\2a2+“'+)\nan; )\ZER}

In finite dimensions, A has a matrix representation A = [a,l as ... a,n}
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Subspace representations. . .

We can also represent S C V' as the kernel of a linear operator B : V' — U.
S = nullspace (B)
= ker (B)
={z eV ; Bx =0}

Or as the set of vectors orthogonal to another set

S={zxeV; (b,x)=0,{(by,x)=0,...,(b,,x) =0}

Recall we say B is injective if ker(B) = {0}.

In finite dimensions, B has a matrix representation
s

B = b?

b,

and often in real Euclidean space (b;, ) = bl x.
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Affine Sets

Suppose V' is a vector space. Then S C V is an affine set if
T,y €S A€ R, A+pu=1—= Ax+ py €5

Geometrically: if x,y € .S then the line through z, vy is contained in S.

Representations Y
As the range of the affine function Au + b, where A: U — V
S={Au+b; ueU}
As the solution to linear equations, where B : V. — U
S={x; Br=c}
Or, we can represent the linear equations as

S={x;(by,x) =c1,{by,x) = o, ..., {by,x) =}

2001.10.08.01
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Convex Sets
The set S C V is a convex set if

r,y €S A >0, A+ p=1 — e+ py €5

Geometrically: S is convex if, given z,y € S, the line segment L(x,y) C S

convex NoN-convex

The line segment
L(x,y)={veV ;v=Ar+ puyforsome \,u >0 A+ p=1}
={veV;v=0zx+(1—0)yforsomed € [0,1]}
Representations

Ellipsoids, polyhedra, and many others. We will see more later in the course.
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Convex Cones
The set S C V is a convex cone if

x,y €S A >0, — A+ py €5

Geometrically: S is convex if, given x,y € S, the ‘pie slice’ between x and Y is
contained in S.

Representations

Many representations . ..
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Hyperplane

In an n dimensional vector space, an n — 1 dimensional affine set is called a hyperplane.

Representations

A linear mapping F': V' — R is called a linear functional.

Given F', a hyperplane can be represented as the set of z € V' which satisfy
S={x; Fx=c}

Or, given a dual vector b,
S =A{z;(bz) =c}
Think of b as the normal to S.

Halfspace
S=A{x; Fo <c} or S=A{x;(bzx) <c}

S
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Intersections

If S; is a subspace for all ¢ € Z, then
ﬂ S; is a subspace.

ieT
Similarly for affine sets, convex sets and convex cones.

Fact: Every closed convex set is the intersection of a (usually infinite) set of halfspaces.

In fact, if S is a closed convex set then

S = ﬂ{H . H is a closed halfspace, and S C H}

Example: A polyhedron is the intersection of finitely many halfspaces.
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Convex Hull

Given a subset S C V/, the convex hull of S is the smallest convex set containing S.
Co(S) = m{C’ C V,C is convex, S C C}

Given S = {x1,x9,...,2,},

Co(S) = {Hlxl + Ooxy + - -+ 0,2, znzel =1,6;, > O}

1=1

Example:
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Separating hyperplanes

Every hyperplane H C V' always breaks V' into two half-spaces, which have the form
{v; Flv)<a}  and {v; Flv) > a}

Given two sets S, T" C V/, we say that the hyperplane separates S and T’ if
SC{v; Flv)<a} and T CH{v; F(v)>a}

&

If S and T are nonempty, convex and S N7 = () then there exists a hyperplane which
separates S from 7.

Separating Hyperplane Theorem:

Stronger form: There exists a strictly separating hyperplane if and only if the sets are
strictly separated.
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The vector space of matrices

Linear functionals: Given Y € R"*"

F(X) = trace(Y"X) Z TikYik
i,k=1

is a linear functional on R"*". Every linear functional on R"*" can be represented this
way.

Symmetric matrices
The set of symmetric matrices

— (X e R, X =X"}
is a subspace of R"*",

Similarly, every linear functional on S" is represented by
F(X) = trace(Y*X)

for some Y € S".
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Eigenvectors of symmetric matrices

Suppose A € R"™" is symmetric, i.e. A= A’.

Theorem: The eigenvalues of A are real.
Proof: Suppose Ax = A\x for x # 0. Then

Ar*x = 2" Ax = (Ax)'z = N'2™x

Since ¥z > 0 we can conclude that A = \*.

Theorem: There is a set {q1,q2,...,q,} of n orthonormal eigenvectors of A, which
satisfy

Ag; = \ig, q;qj = 0ij

In matrix form, there is an orthogonal matrix U such that
U TAU = U*AU = A
hence we can express A as

A=UNU" = Zn:)\z'%q;

1=1
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Matrix Inequalities
The set of Hermitian matrices
H"={AeR"" ;. A= A"}

is a subspace of R"*",

We say A is positive semidefinite if z*Ax > 0 for all z € C".

e Write thisas A > 0.

e A>0if and only if \;(A) > 0 for all 3.
We say A is positive definite if x* Az > 0 for all z € C".

e Write this as A > 0.

e A > 0ifandonlyif \;(A) > 0 for all i.

We say A is negative definite, written A < 0, if —A > 0.

Similarly for negative semidefinite.
Wesay A > Bif A— B > 0.

Otherwise A is called indefinite.

2001.10.08.01
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Positive definiteness

o IfQ)>0and A € C"™™ then A*QA > 0. If ker(A) =0, then A*QA > 0.

o If 1,12 > 0 and py, o > 0, then p1QQ1 + @2 > 0. This implies that the set of
positive definite matrices is a convex cone.

The Schur complement formula

Suppose (), M and R are matrices and that M and () are Hermitian. Then the following
are equivalent:

(a) The matrix inequalities () > 0 and
M — RQ'R* > 0 both hold.

(b) The matrix inequality
M R
R Q

] > () is satisfied.
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Proof of the Schur complement formula

The two inequalities listed in (a) are equivalent to the single block inequality.

[M—RQ—lR* o] .

0 Q

Now left- and right-multiply this inequality by the nonsingular matrix
I RQ™!
0 I

and its adjoint, respectively, to get

M Rl [I RQ7™\] [M—RQ'R* 0 1o0]
ol " |lo 1 |’ 0 ol lo'r 1| ™"

Therefore inequality (b) holds if and only if (a) holds.



