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Engr210a Lecture 3: Singular Values and LMIs

• Matrix norm

• Singular value decomposition (SVD)

• Minimal-rank approximation

• Sensitivity of eigenvalues and singular values

• Linear matrix inequalities (LMIs)

• Semidefinite programming problems
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Norm of a matrix

Suppose A ∈ R
m×n. The matrix norm of A is

‖A‖ = max
x �=0

‖Ax‖
‖x‖

Also called the operator norm or spectral norm.

Gives the maximum gain or amplification of A.

Properties

• Consistent with usual Euclidean vector norm; if b ∈ R
n, then

‖b‖ =
√

λmax(b∗b) =
√

b∗b

• For any x, we have ‖Ax‖ ≤ ‖A‖‖x‖.
• Scaling: ‖cA‖ = |c|‖A‖
• Triangle inequality: ‖A + B‖ ≤ ‖A‖ + ‖B‖.
• Definiteness: ‖A‖ = 0 ⇐⇒ A = 0.

• Submultiplicative property: ‖AB‖ ≤ ‖A‖‖B‖.
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Singular value decomposition

Given A ∈ C
m×n, we can decompose it into the singular value decomposition (SVD)

A = UΣV ∗

where

• U ∈ Cm×m is unitary,

• V ∈ C
n×n is unitary,

• Σ ∈ Rm×n is diagonal.

Note that if m �= n, the matrix Σ is not square; it has the form

Σ =




σ1 0
σ2

. . .
σn

0 · · · 0
... ...
0 · · · 0




or Σ =




σ1 0 0 . . . 0
σ2

... ...
. . .

σm 0 . . . 0




We choose σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0, where p = min{m, n}.
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Singular value decomposition 2

Given A ∈ C
m×n, we can decompose it into the singular value decomposition (SVD)

A = UΣV ∗

where U ∈ Cm×m is unitary, V ∈ Cn×n is unitary, and Σ ∈ Rm×n is diagonal.

With U =
[
u1 u2 · · · um

]
and V =

[
v1 v2 · · · vn

]
, we have

A = UΣV ∗ =

p∑
i=1

σiuiv
∗
i

• σi are the singular values of A.

• ui are the left singular vectors of A.

• vi are the right singular vectors of A.

The number of nonzero singular values equals the rank of A.
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Singular value decomposition 3

Given A ∈ C
m×n, we can decompose it into the singular value decomposition (SVD)

A = UΣV ∗

where U ∈ Cm×m is unitary, V ∈ Cn×n is unitary, and Σ ∈ Rm×n is diagonal.

We have
AA∗ = UΣV ∗V Σ∗U ∗ = UΣΣ∗U ∗

Hence

• ui are the eigenvectors of AA∗

• σi =
√

λi(AA∗) are the eigenvalues of AA∗

Similarly A∗A = V Σ∗U ∗UΣV ∗ = V Σ∗ΣV ∗ and vi are the eigenvectors of A∗A, with
σi =

√
λi(A∗A) the eigenvalues of A∗A.

If r = rank(A), then

• {u1, . . . , ur} are an orthonormal basis for range(A).

• {v1, . . . , vr} are an orthonormal basis for ker(A)⊥.
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Linear mapping interpretation of SVD

x
UV ∗ Σ

V ∗x ΣV ∗x UΣV ∗x

The SVD decomposes the linear mapping into

• Compute coefficients along directions vi.

• Scale coefficients by σi.

• Generate output along directions ui.

Note that, unlike the eigen-decomposition, input and output directions are different.

The maximum singular-value, σ1 gives the norm of A.

‖A‖ = max
x �=0

‖Ax‖
‖x‖ = σ1

The minimum singular-value, σp gives the minimum gain of the matrix A.

min
x �=0

‖Ax‖
‖x‖ = σp
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Geometric interpretation of SVD

The matrix A ∈ R
m×n maps the unit sphere in R

n to an ellipsoid in R
m.

{x ∈ R
n ; ‖x‖ = 1} → {y ; y = Ax, x ∈ R

n, ‖x‖ = 1}
The semi-axes of the ellipse are ui, with length σi.

Note that the ellipse will be degenerate if A is not surjective.
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Algebraic interpretation of SVD

The SVD captures the numerical rank of a matrix A ∈ C
m×n.

min
{
‖A − B‖ ; B ∈ C

m×n, rank(B) ≤ k
}

= σk+1

Theorem: The minimal rank k approximant to A is given by

Ak =
k∑

i=1

σiuiv
∗
i

Hence, if a matrix A ∈ R10×10 has singular values

σ1 = 100, σ2 = 35, σ3 = 10, σ4 = 2

and σ5 ≤ 0.00001, then we might say its numerical rank is 4.

Example:

A =

[
1 2
2 4.01

]
has singular values σ1 = 5, σ2 = 0.002. Its optimal rank 1 approximant is

A =

[
0.9984 2.0008
2.0008 4.0096

]
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Proof: We have

Ak =

k∑
i=1

σiuiv
∗
i

hence
U ∗AkV = diag(σ1, . . . , σk, 0, . . . , 0).

So
U ∗(A − Ak)V = diag(0, . . . , 0, σk + 1, . . . , σp)

and hence ‖A − Ak‖ = σk+1.

Now we wish to show that no matrix B can do better. Suppose rank(B) = k for some B,
and let {x1, . . . , xn−k} be an orthonormal basis for ker(B). Since (n− k) + (k + 1) > n,

span{x1, . . . , xn−k} ∩ span{v1, . . . , vk+1} �= ∅

Let z be a unit vector in this intersection. Then Bz = 0, and

Az = UΣV ∗z =
k+1∑
i=1

σi(v
∗
i z)ui with

k+1∑
i=1

(v∗i z)2 = 1

hence

‖A − B‖2 ≥ ‖(A − B)z‖2 = ‖Az‖2 =
k+1∑
i=1

σ2
i (v

∗
i z)2 ≥ σ2

k+1
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Example: use of low rank approximants

Suppose A ∈ R
10000×10000 is dense. Then computing the matrix-vector product Ax is

computationally expensive; 108 multiplications.

But if A has singular values

σ1 = 100, σ2 = 35, σ3 = 10, σ4 = 2

and σk ≤ 0.001 for k ≥ 5, then the optimal rank 4 approximant is

A4 =
4∑

i=1

σiuiv
∗
i

Then, let

b = A4x = 100(v∗1x)u1 + 35(v∗2x)u2 + 10(v∗3x)u3 + 2(v∗4x)u4

and we have
‖Ax − b‖ ≤ ‖A − A4‖‖x‖ ≤ 0.001‖x‖

which gives a relative error of 0.1% in 4 × 104 multiplications.
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Sensitivity of eigenvalues vs. singular values

Eigenvalues

Suppose

A =

[
0 I9

0 0

]
E =

[
0 0

10−10 0

]
We have

λi(A) = 0 for all i and λmax(A + E) = 0.1;

A change of order 10−10 in A resulted in a change of order 0.1 in its eigenvalues.

The position of the poles of a system can be extremely sensitive to the values of system
parameters.

Singular values

Since ‖A‖ = σ1(A), we know from the triangle inequality that

σ1(A + E) ≤ σ1(A) + σ1(E)

In this case, σ1(A) = 1 and σ1(E) = 10−10.
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Linear matrix inequalities (LMIs)

An inequality of the form
F (x) < Q

where

• The variable x takes values in a real vector space V .

• The mapping F : V → Hn is linear.

• Q ∈ Hn.

Properties

• A wide variety of control problems can be reduced to a few standard convex opti-
mization problems involving linear matrix inequalities (LMIs).

• The resulting computational problems can be solved numerically very efficiently, using
interior-point methods.

• These algorithms have many important properties, including small computation time,
global solutions, provable lower bounds, certificates proving infeasibility, . . .

• An LMI formulation often provides an effective solution to a problem.
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LMIs in vector form

Every LMI can be represented as

F (x) = x1F1 + x2F2 + · · · + xmFm < Q

In this case, x ∈ Rm and Fi ∈ Hn.

Example

The inequality 
 x1 − 3 x1 + x2 −1

x1 + x2 x2 − 4 0
−1 0 x1


 < 0

is an LMI.

In standard form, we can write this as

x1


1 1 0

1 0 0
0 0 1


 + x2


0 1 0

1 1 0
0 0 0


 <


0 0 1

0 4 0
1 0 0
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Semidefinite programming (SDP)

Feasibility problems

Given the LMI
F (x) = x1F1 + x2F2 + · · · + xmFm < Q

• Find a feasible point x ∈ Rm such that the LMI is satisfied, or

• determine that there is no such x; that is, that the LMI is infeasible.

Linear objective problems

A general problem form is

minimize c∗x
subject to x1F1 + x2F2 + · · · + xmFm < Q

Ax = b

• Linear cost function

• Equality constraints
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LMIs define convex subsets of V

Theorem: The set
C =

{
x ∈ V ; F (x) < Q

}
is convex.

Proof: We need to show

x1, x2 ∈ C, θ ∈ [0, 1] =⇒ θx1 + (1 − θ)x2 ∈ C
Since F is linear,

F (θx1 + (1 − θ)x2) = θF (x1) + (1 − θ)F (x2) < θQ + (1 − θ)Q = Q

Alternative proof: The image of a convex set under an affine map is convex.
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LMIs as polynomial inequalities

Suppose A ∈ H
n. Let Ak ∈ R

k×k be the submatrix of A consisting of the first k rows
and columns.

Fact: A > 0 ⇐⇒ det(Ak) > 0 for k = 1, . . . , n.

Example:[
3 − x1 −(x1 + x2) 1

−(x1 + x2) 4 − x2 0
1 0 −x1

]
> 0 ⇐⇒

3 − x1 > 0 (C)

(3 − x1)(4 − x2) − (x1 + x2)
2 > 0 (A)

−x1((3 − x1)(4 − x2) − (x1 + x2)
2) − (4 − x2) > 0 (B)

A

B

C
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LMIs with matrix variables

Consider the inequality [
A∗X + XA XB

B∗X −I

]
< 0

Defining F : S
n → S

m by

F (X) =

[
A∗X + XA XB

B∗X 0

]
=⇒ F (X) <

[
0 0
0 I

]

Notes

• The most common form of LMI in systems and control.

• Easily recognizable.

• Can be more efficient.

• Accepted by software, such as the LMI Control Toolbox.

• Multiple LMIs G1(x) < 0, . . . , Gn(x) < 0 can be converted to one (block-diagonal)
LMI

diag(G1(x), . . . , Gn(x)) < 0
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LPs can be cast as LMIs

The general linear program

minimize c∗x
subject to a∗1x < b1

a∗2x < b2

...

a∗nx < bn

can be expressed as the SDP

minimize c∗x

subject to




a∗1x − b1

a∗2x − b2
. . .

a∗nx −bn


 < 0
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Schur Complements

Recall

Q > 0 and M − RQ−1R∗ > 0 ⇐⇒
[
M R
R∗ Q

]
> 0

Example: The matrix X ∈ S
n satisfies

A∗X − XA + C∗C + XBB∗X < 0

if and only if [
A∗X + XA + C∗C XB

B∗X −I

]
< 0

This is extremely useful and will reappear often.
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Some standard LMIs

Suppose Fi ∈ S
n, and

Z(x) = x1F1 + x2F2 + · · · + xmFm

Matrix norm constraint:

‖Z(x)‖ < 1 ⇐⇒
[

I Z(x)
Z∗(x) I

]
> 0

Matrix norm minimization:

minimize t

subject to

[
tI Z(x)

Z∗(x) tI

]
> 0

Maximum eigenvalue minimization:

minimize t

subject to Z(x) − tI < 0


