Engr210a Lecture 3: Singular Values and LMIs

- Matrix norm
- Singular value decomposition (SVD)
- Minimal-rank approximation
- Sensitivity of eigenvalues and singular values
- Linear matrix inequalities (LMIs)
- Semidefinite programming problems

Norm of ^a matrix

Suppose $A \in \mathbb{R}^{m \times n}$. The *matrix norm* of A is

$$
||A|| = \max_{x \neq 0} \frac{||Ax||}{||x||}
$$

Also called the *operator norm* or *spectral norm*.

Gives the maximum *gain* or *amplification* of A.

Properties

 $\bullet~$ Consistent with usual Euclidean vector norm; if $b\in \mathbb{R}^n$, then

$$
||b|| = \sqrt{\lambda_{\max}(b^*b)} = \sqrt{b^*b}
$$

- $\bullet\;$ For any x , we have $\|Ax\|\leq \|A\|\|x\|.$
- \bullet Scaling: $\|cA\|=|c|\|A\|$
- $\bullet\;$ Triangle inequality: $\|A+B\|\leq \|A\|+\|B\|.$
- $\bullet\,$ Definiteness: $\|A\|=0\iff A=0.$
- $\bullet\,$ Submultiplicative property: $\|AB\|\le\|A\|\|B\|.$

Singular value decomposition

Given $A \in \mathbb{C}^{m \times n}$, we can decompose it into the *singular value decomposition* (SVD)

 $A = U\Sigma V^*$

where

- $\bullet\;\;U\in\mathbb{C}^{m\times m}$ is unitary,
- $\bullet\;\; V\in \mathbb{C}^{n\times n}$ is unitary,
- $\bullet~~\Sigma \in \mathbb{R}^{m \times n}$ is diagonal.

Note that if $m \neq n$, the matrix Σ is not square; it has the form

 $\Sigma=$ $\sqrt{2}$ $\overline{}$ σ_1 0 σ_2 . . . σ_n $0 \cdots 0$ $0 \cdots 0$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ or $\Sigma =$ $\overline{}$ σ_1 0 0 \ldots 0 σ2 σ_m 0 \ldots 0 $\overline{}$ $\overline{}$

We choose $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_p \geq 0$, where $p = \min\{m, n\}$.

Singular value decomposition 2

Given $A \in \mathbb{C}^{m \times n}$, we can decompose it into the *singular value decomposition* (SVD) $A = U\Sigma V^*$

where $U \in \mathbb{C}^{m \times m}$ is unitary, $V \in \mathbb{C}^{n \times n}$ is unitary, and $\Sigma \in \mathbb{R}^{m \times n}$ is diagonal.

With
$$
U = [u_1 \ u_2 \ \cdots \ u_m]
$$
 and $V = [v_1 \ v_2 \ \cdots \ v_n]$, we have
\n
$$
A = U \Sigma V^* = \sum_{i=1}^p \sigma_i u_i v_i^*
$$

- \bullet σ_i are the *singular values* of A .
- \bullet u_i are the *left singular vectors* of A .
- \bullet $\ v_i$ are the *right singular vectors* of $A.$

The number of nonzero singular values equals the rank of A .

Singular value decomposition 3

Given $A \in \mathbb{C}^{m \times n}$, we can decompose it into the *singular value decomposition* (SVD) $A = I/\Sigma V^*$

where $U \in \mathbb{C}^{m \times m}$ is unitary, $V \in \mathbb{C}^{n \times n}$ is unitary, and $\Sigma \in \mathbb{R}^{m \times n}$ is diagonal.

We have

$$
AA^* = U\Sigma V^* V \Sigma^* U^* = U\Sigma \Sigma^* U^*
$$

Hence

- $\bullet~~ u_i$ are the eigenvectors of AA^*
- $\bullet~~\sigma_i=\sqrt{\lambda_i(AA^*)}$ are the eigenvalues of AA^*

Similarly $A^*A = V\Sigma^*U^*U\Sigma V^* = V\Sigma^*\Sigma V^*$ and v_i are the eigenvectors of A^*A , with $\sigma_i = \sqrt{\lambda_i(A^*A)}$ the eigenvalues of A^*A .

If $r = \text{rank}(A)$, then

- $\bullet \ \ \{u_1,\ldots,u_r\}$ are an orthonormal basis for $\mathrm{range}(A).$
- $\bullet \ \ \{v_1,\ldots,v_r\}$ are an orthonormal basis for $\ker(A)^{\perp}.$

Linear mapping interpretation of SVD

The SVD decomposes the linear mapping into

- \bullet Compute coefficients along directions $v_i.$
- Scale coefficients by $\sigma_i.$
- \bullet Generate output along directions $u_i.$

Note that, unlike the eigen-decomposition, input and output directions are different. The maximum singular-value, σ_1 gives the norm of A .

$$
||A|| = \max_{x \neq 0} \frac{||Ax||}{||x||} = \sigma_1
$$

The minimum singular-value, σ_p gives the minimum *gain* of the matrix A.

$$
\min_{x \neq 0} \frac{\|Ax\|}{\|x\|} = \sigma_p
$$

Geometric interpretation of SVD

The matrix $A \in \mathbb{R}^{m \times n}$ maps the unit sphere in \mathbb{R}^n to an ellipsoid in \mathbb{R}^m .

$$
\{x \in \mathbb{R}^n \; ; \; \|x\| = 1\} \quad \to \quad \{y \; ; \; y = Ax, x \in \mathbb{R}^n, \|x\| = 1\}
$$

The semi-axes of the ellipse are u_i , with length σ_i .

Note that the ellipse will be degenerate if A is not surjective.

Algebraic interpretation of SVD

The SVD captures the *numerical rank* of a matrix $A \in \mathbb{C}^{m \times n}$.

$$
\min\left\{\|A - B\| \; ; \; B \in \mathbb{C}^{m \times n}, \text{rank}(B) \le k\right\} = \sigma_{k+1}
$$

Theorem: The minimal rank k approximant to A is given by

$$
A_k = \sum_{i=1}^k \sigma_i u_i v_i^*
$$

Hence, if a matrix $A \in \mathbb{R}^{10 \times 10}$ has singular values

$$
\sigma_1 = 100
$$
, $\sigma_2 = 35$, $\sigma_3 = 10$, $\sigma_4 = 2$

and $\sigma_5 \leq 0.00001$, then we might say its *numerical rank* is 4.

Example:

$$
A = \begin{bmatrix} 1 & 2 \\ 2 & 4.01 \end{bmatrix}
$$

has singular values $\sigma_1 = 5$, $\sigma_2 = 0.002$. Its optimal rank 1 approximant is

$$
A = \begin{bmatrix} 0.9984 & 2.0008 \\ 2.0008 & 4.0096 \end{bmatrix}
$$

Proof: We have

$$
A_k = \sum_{i=1}^k \sigma_i u_i v_i^*
$$

hence

$$
U^*A_kV=\mathrm{diag}(\sigma_1,\ldots,\sigma_k,0,\ldots,0).
$$

So

$$
U^*(A-A_k)V=\mathrm{diag}(0,\ldots,0,\sigma_k+1,\ldots,\sigma_p)
$$

and hence $\|A-A_k\|=\sigma_{k+1}.$

Now we wish to show that no matrix B can do better. Suppose $\text{rank}(B) = k$ for some B, and let $\{x_1,\ldots,x_{n-k}\}$ be an orthonormal basis for $\ker(B)$. Since $(n-k)+(k+1) > n$, span ${x_1,\ldots,x_{n-k}}$ ∩ span ${v_1,\ldots,v_{k+1}} \neq \emptyset$

Let z be a unit vector in this intersection. Then $Bz = 0$, and

$$
Az = U\Sigma V^* z = \sum_{i=1}^{k+1} \sigma_i(v_i^* z) u_i \quad \text{with} \quad \sum_{i=1}^{k+1} (v_i^* z)^2 = 1
$$

hence

$$
||A - B||^2 \ge ||(A - B)z||^2 = ||Az||^2 = \sum_{i=1}^{k+1} \sigma_i^2 (v_i^* z)^2 \ge \sigma_{k+1}^2
$$

Example: use of low rank approximants

Suppose $A \in \mathbb{R}^{10000 \times 10000}$ is dense. Then computing the matrix-vector product Ax is computationally expensive; 10^8 multiplications.

But if A has singular values

$$
\sigma_1 = 100
$$
, $\sigma_2 = 35$, $\sigma_3 = 10$, $\sigma_4 = 2$

and $\sigma_k \leq 0.001$ for $k \geq 5$, then the optimal rank 4 approximant is

$$
A_4 = \sum_{i=1}^4 \sigma_i u_i v_i^*
$$

Then, let

$$
b = A_4x = 100(v_1^*x)u_1 + 35(v_2^*x)u_2 + 10(v_3^*x)u_3 + 2(v_4^*x)u_4
$$

and we have

$$
||Ax - b|| \le ||A - A_4|| ||x|| \le 0.001 ||x||
$$

which gives a relative error of 0.1% in 4×10^4 multiplications.

Sensitivity of eigenvalues vs. singular values

Eigenvalues

Suppose

$$
A = \begin{bmatrix} 0 & I_9 \\ 0 & 0 \end{bmatrix} \qquad E = \begin{bmatrix} 0 & 0 \\ 10^{-10} & 0 \end{bmatrix}
$$

We have

$$
\lambda_i(A) = 0 \text{ for all } i \qquad \text{and} \qquad \lambda_{\max}(A + E) = 0.1;
$$

A change of order 10^{-10} in A resulted in a change of order 0.1 in its eigenvalues.

The position of the poles of ^a system can be extremely sensitive to the values of system parameters.

Singular values

Since $\| A \| = \sigma_1(A)$, we know from the triangle inequality that

$$
\sigma_1(A + E) \le \sigma_1(A) + \sigma_1(E)
$$

In this case, $\sigma_1(A) = 1$ and $\sigma_1(E) = 10^{-10}$.

Linear matrix inequalities (LMIs)

An inequality of the form

 $F(x) < Q$

where

- $\bullet~$ The variable x takes values in a real vector space $V.$
- $\bullet~$ The mapping $F:V\rightarrow \mathbb{H}^n$ is linear.
- $\bullet\ \ Q\in {\mathbb H}^n.$

Properties

- A wide variety of control problems can be reduced to ^a few standard convex optimization problems involving linear matrix inequalities (LMIs).
- The resulting computational problems can be solved *numerically* very efficiently, using *interior-point methods*.
- These algorithms have many important properties, including small computation time, global solutions, provable lower bounds, certificates proving infeasibility, . . .
- An LMI formulation often provides an effective solution to ^a problem.

LMIs in vector form

Every LMI can be represented as

$$
F(x) = x_1 F_1 + x_2 F_2 + \dots + x_m F_m < Q
$$

In this case, $x \in \mathbb{R}^m$ and $F_i \in \mathbb{H}^n$.

Example

The inequality

$$
\begin{bmatrix} x_1 - 3 & x_1 + x_2 & -1 \\ x_1 + x_2 & x_2 - 4 & 0 \\ -1 & 0 & x_1 \end{bmatrix} < 0
$$

is an LMI.

In standard form, we can write this as

$$
x_1 \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} + x_2 \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} < \begin{bmatrix} 0 & 0 & 1 \\ 0 & 4 & 0 \\ 1 & 0 & 0 \end{bmatrix}
$$

Semidefinite programming (SDP)

Feasibility problems

Given the LMI

$$
F(x) = x_1 F_1 + x_2 F_2 + \dots + x_m F_m < Q
$$

- \bullet Find a *feasible point* $x\in \mathbb{R}^m$ such that the LMI is satisfied, or
- $\bullet\,$ determine that there is no such $x;$ that is, that the LMI is *infeasible*.

Linear objective problems

A general problem form is

minimize
$$
c^*x
$$

subject to $x_1F_1 + x_2F_2 + \cdots + x_mF_m < Q$
 $Ax = b$

- Linear cost function
- Equality constraints

LMIs define convex subsets of V

Theorem: The set

$$
\mathcal{C} = \left\{ x \in V \; ; \; F(x) < Q \right\}
$$

is convex.

Proof: We need to show

$$
x_1, x_2 \in \mathcal{C}, \quad \theta \in [0, 1] \quad \implies \quad \theta x_1 + (1 - \theta)x_2 \in \mathcal{C}
$$

Since F is linear,

$$
F(\theta x_1 + (1 - \theta)x_2) = \theta F(x_1) + (1 - \theta)F(x_2) < \theta Q + (1 - \theta)Q = Q
$$

Alternative proof: The image of a convex set under an affine map is convex.

LMIs as polynomial inequalities

Suppose $A \in \mathbb{H}^n$. Let $A_k \in \mathbb{R}^{k \times k}$ be the *submatrix* of A consisting of the first k rows and columns.

Fact: $A > 0 \iff \det(A_k) > 0$ for $k = 1, ..., n$.

Example:

$$
\begin{bmatrix}\n3-x_1 & -(x_1+x_2) & 1 \\
-(x_1+x_2) & 4-x_2 & 0 \\
1 & 0 & -x_1\n\end{bmatrix} > 0 \iff (3-x_1)(4-x_2) - (x_1+x_2)^2 > 0 \quad (A)
$$
\n
$$
-x_1((3-x_1)(4-x_2) - (x_1+x_2)^2) - (4-x_2) > 0 \quad (B)
$$

LMIs with matrix variables

Consider the inequality

$$
\begin{bmatrix} A^*X + XA & XB \\ B^*X & -I \end{bmatrix} < 0
$$

Defining $F: \mathbb{S}^n \to \mathbb{S}^m$ by

$$
F(X) = \begin{bmatrix} A^*X + XA & XB \\ B^*X & 0 \end{bmatrix} \qquad \Longrightarrow \qquad F(X) < \begin{bmatrix} 0 & 0 \\ 0 & I \end{bmatrix}
$$

Notes

- \bullet The most common form of LMI in systems and control.
- Easily recognizable.
- Can be more efficient.
- Accepted by software, such as the LMI Control Toolbox.
- $\bullet~$ Multiple LMIs $G_1(x) < 0, \ldots, G_n(x) < 0$ can be converted to one (block-diagonal) LMI

 $diag(G_1(x),\ldots,G_n(x)) < 0$

3 - 18 Singular Values and LMIs 2001.10.08.01

LPs can be cast as LMIs

The general linear program

minimize
$$
c^*x
$$

subject to $a_1^*x < b_1$
 $a_2^*x < b_2$
 \vdots
 $a_n^*x < b_n$

can be expressed as the SDP

minimize
$$
c^*x
$$

\nsubject to\n
$$
\begin{bmatrix}\na_1^*x - b_1 & a_2^*x - b_2 & a_n^*x - b_n\n\end{bmatrix} < 0
$$

3 - 19 Singular Values and LMIs 2001.10.08.01

Schur Complements

Recall

$$
Q > 0 \text{ and } M - RQ^{-1}R^* > 0 \qquad \Longleftrightarrow \qquad \begin{bmatrix} M & R \\ R^* & Q \end{bmatrix} > 0
$$

Example: The matrix $X \in \mathbb{S}^n$ satisfies

 $A^*X - XA + C^*C + XBB^*X < 0$

if and only if

$$
\begin{bmatrix} A^*X + XA + C^*C & XB \\ B^*X & -I \end{bmatrix} < 0
$$

This is extremely useful and will reappear often.

3 - 20 Singular Values and LMIs 2001.10.08.01

Some standard LMIs

Suppose $F_i \in \mathbb{S}^n$, and

$$
Z(x) = x_1F_1 + x_2F_2 + \cdots + x_mF_m
$$

Matrix norm constraint:

$$
||Z(x)|| < 1 \qquad \iff \qquad \begin{bmatrix} I & Z(x) \\ Z^*(x) & I \end{bmatrix} > 0
$$

Matrix norm minimization:

minimize
$$
t
$$

subject to
$$
\begin{bmatrix} tI & Z(x) \\ Z^*(x) & tI \end{bmatrix} > 0
$$

Maximum eigenvalue minimization:

$$
\begin{array}{ll}\text{minimize} & t\\ \text{subject to} & Z(x) - tI < 0 \end{array}
$$