3 - 1 Singular Values and LMIs 2001.10.08.01

Engr210a Lecture 3: Singular Values and LMIs

- Matrix norm
- Singular value decomposition (SVD)
- Minimal-rank approximation
- Sensitivity of eigenvalues and singular values
- Linear matrix inequalities (LMIs)
- Semidefinite programming problems

3 - 2 Singular Values and LMIs 2001.10.08.01

Norm of a matrix

Suppose $A \in \mathbb{R}^{m \times n}$. The matrix norm of A is

$$||A|| = \max_{x \neq 0} \frac{||Ax||}{||x||}$$

Also called the *operator norm* or *spectral norm*.

Gives the maximum gain or amplification of A.

Properties

• Consistent with usual Euclidean vector norm; if $b \in \mathbb{R}^n$, then

$$\|b\| = \sqrt{\lambda_{\max}(b^*b)} = \sqrt{b^*b}$$

- For any x, we have $||Ax|| \le ||A|| ||x||$.
- Scaling: ||cA|| = |c|||A||
- Triangle inequality: $||A + B|| \le ||A|| + ||B||$.
- Definiteness: $||A|| = 0 \iff A = 0$.
- Submultiplicative property: $||AB|| \le ||A|| ||B||$.

3 - 3 Singular Values and LMIs 2001.10.08.01

Singular value decomposition

Given $A \in \mathbb{C}^{m \times n}$, we can decompose it into the singular value decomposition (SVD)

$$A = U\Sigma V^*$$

where

- $U \in \mathbb{C}^{m \times m}$ is unitary,
- $V \in \mathbb{C}^{n \times n}$ is unitary,
- $\Sigma \in \mathbb{R}^{m \times n}$ is diagonal.

Note that if $m \neq n$, the matrix Σ is not square; it has the form

$$\Sigma = \begin{bmatrix} \sigma_1 & & & 0 \\ & \sigma_2 & & \\ & & \ddots & \\ & & \sigma_n \\ 0 & \cdots & 0 \\ \vdots & & \vdots \\ 0 & \cdots & 0 \end{bmatrix} \quad \text{or} \quad \Sigma = \begin{bmatrix} \sigma_1 & & 0 & 0 & \dots & 0 \\ & \sigma_2 & & \vdots & & \vdots \\ & & \ddots & & \\ & & & \sigma_m & 0 & \dots & 0 \end{bmatrix}$$

We choose $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_p \geq 0$, where $p = \min\{m, n\}$.

3 - 4 Singular Values and LMIs 2001.10.08.01

Singular value decomposition 2

Given $A \in \mathbb{C}^{m \times n}$, we can decompose it into the singular value decomposition (SVD)

$$A = U\Sigma V^*$$

where $U \in \mathbb{C}^{m \times m}$ is unitary, $V \in \mathbb{C}^{n \times n}$ is unitary, and $\Sigma \in \mathbb{R}^{m \times n}$ is diagonal.

With $U = \begin{bmatrix} u_1 & u_2 & \cdots & u_m \end{bmatrix}$ and $V = \begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix}$, we have

$$A = U\Sigma V^* = \sum_{i=1}^p \sigma_i u_i v_i^*$$

- σ_i are the *singular values* of A.
- u_i are the *left singular vectors* of A.
- v_i are the right singular vectors of A.

The number of nonzero singular values equals the rank of A.

3 - 5 Singular Values and LMIs 2001.10.08.01

Singular value decomposition 3

Given $A \in \mathbb{C}^{m \times n}$, we can decompose it into the singular value decomposition (SVD)

$$A = U\Sigma V^*$$

where $U \in \mathbb{C}^{m \times m}$ is unitary, $V \in \mathbb{C}^{n \times n}$ is unitary, and $\Sigma \in \mathbb{R}^{m \times n}$ is diagonal.

We have

$$AA^* = U\Sigma V^*V\Sigma^*U^* = U\Sigma\Sigma^*U^*$$

Hence

- u_i are the eigenvectors of AA^*
- $\sigma_i = \sqrt{\lambda_i(AA^*)}$ are the eigenvalues of AA^*

Similarly $A^*A = V\Sigma^*U^*U\Sigma V^* = V\Sigma^*\Sigma V^*$ and v_i are the eigenvectors of A^*A , with $\sigma_i = \sqrt{\lambda_i(A^*A)}$ the eigenvalues of A^*A .

If $r = \operatorname{rank}(A)$, then

- $\{u_1, \ldots, u_r\}$ are an orthonormal basis for range(A).
- $\{v_1, \ldots, v_r\}$ are an orthonormal basis for $\ker(A)^{\perp}$.

3 - 6 Singular Values and LMIs 2001.10.08.01

Linear mapping interpretation of SVD

The SVD decomposes the linear mapping into

- Compute coefficients along directions v_i .
- Scale coefficients by σ_i .
- Generate output along directions u_i .

Note that, unlike the eigen-decomposition, input and output directions are different. The maximum singular-value, σ_1 gives the norm of A.

$$||A|| = \max_{x \neq 0} \frac{||Ax||}{||x||} = \sigma_1$$

The minimum singular-value, σ_p gives the minimum gain of the matrix A.

$$\min_{x \neq 0} \frac{\|Ax\|}{\|x\|} = \sigma_p$$

3 - 7 Singular Values and LMIs 2001.10.08.01

Geometric interpretation of SVD

The matrix $A \in \mathbb{R}^{m \times n}$ maps the unit sphere in \mathbb{R}^n to an ellipsoid in \mathbb{R}^m .

$$\{x \in \mathbb{R}^n \; ; \; ||x|| = 1\} \quad \to \quad \{y \; ; \; y = Ax, x \in \mathbb{R}^n, ||x|| = 1\}$$

The semi-axes of the ellipse are u_i , with length σ_i .

Note that the ellipse will be degenerate if A is not surjective.

3 - 8 Singular Values and LMIs 2001.10.08.01

Algebraic interpretation of SVD

The SVD captures the *numerical rank* of a matrix $A \in \mathbb{C}^{m \times n}$.

$$\min\{\|A - B\| ; B \in \mathbb{C}^{m \times n}, \operatorname{rank}(B) \le k\} = \sigma_{k+1}$$

Theorem: The minimal rank k approximant to A is given by

$$A_k = \sum_{i=1}^k \sigma_i u_i v_i^*$$

Hence, if a matrix $A \in \mathbb{R}^{10 \times 10}$ has singular values

$$\sigma_1 = 100, \quad \sigma_2 = 35, \quad \sigma_3 = 10, \quad \sigma_4 = 2$$

and $\sigma_5 \leq 0.00001$, then we might say its *numerical rank* is 4.

Example:

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 4.01 \end{bmatrix}$$

has singular values $\sigma_1 = 5$, $\sigma_2 = 0.002$. Its optimal rank 1 approximant is

$$A = \begin{bmatrix} 0.9984 & 2.0008 \\ 2.0008 & 4.0096 \end{bmatrix}$$

3 - 9 Singular Values and LMIs 2001.10.08.01

Proof: We have

$$A_k = \sum_{i=1}^k \sigma_i u_i v_i^*$$

hence

$$U^*A_kV = \operatorname{diag}(\sigma_1, \dots, \sigma_k, 0, \dots, 0).$$

So

$$U^*(A - A_k)V = \operatorname{diag}(0, \dots, 0, \sigma_k + 1, \dots, \sigma_p)$$

and hence $||A - A_k|| = \sigma_{k+1}$.

Now we wish to show that no matrix B can do better. Suppose rank(B) = k for some B, and let $\{x_1, \ldots, x_{n-k}\}$ be an orthonormal basis for ker(B). Since (n-k)+(k+1)>n,

$$\operatorname{span}\{x_1,\ldots,x_{n-k}\}\cap\operatorname{span}\{v_1,\ldots,v_{k+1}\}\neq\emptyset$$

Let z be a unit vector in this intersection. Then Bz = 0, and

$$Az = U\Sigma V^*z = \sum_{i=1}^{k+1} \sigma_i(v_i^*z)u_i$$
 with $\sum_{i=1}^{k+1} (v_i^*z)^2 = 1$

hence

$$||A - B||^2 \ge ||(A - B)z||^2 = ||Az||^2 = \sum_{i=1}^{k+1} \sigma_i^2 (v_i^* z)^2 \ge \sigma_{k+1}^2$$

3 - 10 Singular Values and LMIs 2001.10.08.01

Example: use of low rank approximants

Suppose $A \in \mathbb{R}^{10000 \times 10000}$ is dense. Then computing the matrix-vector product Ax is computationally expensive; 10^8 multiplications.

But if A has singular values

$$\sigma_1 = 100, \quad \sigma_2 = 35, \quad \sigma_3 = 10, \quad \sigma_4 = 2$$

and $\sigma_k \leq 0.001$ for $k \geq 5$, then the optimal rank 4 approximant is

$$A_4 = \sum_{i=1}^4 \sigma_i u_i v_i^*$$

Then, let

$$b = A_4 x = 100(v_1^* x)u_1 + 35(v_2^* x)u_2 + 10(v_3^* x)u_3 + 2(v_4^* x)u_4$$

and we have

$$||Ax - b|| \le ||A - A_4|| ||x|| \le 0.001 ||x||$$

which gives a relative error of 0.1% in 4×10^4 multiplications.

3 - 11 Singular Values and LMIs 2001.10.08.01

Sensitivity of eigenvalues vs. singular values

Eigenvalues

Suppose

$$A = \begin{bmatrix} 0 & I_9 \\ 0 & 0 \end{bmatrix} \qquad E = \begin{bmatrix} 0 & 0 \\ 10^{-10} & 0 \end{bmatrix}$$

We have

$$\lambda_i(A) = 0$$
 for all i and $\lambda_{\max}(A + E) = 0.1;$

A change of order 10^{-10} in A resulted in a change of order 0.1 in its eigenvalues.

The position of the poles of a system can be extremely sensitive to the values of system parameters.

Singular values

Since $||A|| = \sigma_1(A)$, we know from the triangle inequality that

$$\sigma_1(A+E) \le \sigma_1(A) + \sigma_1(E)$$

In this case, $\sigma_1(A) = 1$ and $\sigma_1(E) = 10^{-10}$.

3 - 12 Singular Values and LMIs 2001.10.08.01

Linear matrix inequalities (LMIs)

An inequality of the form

where

- ullet The variable x takes values in a real vector space V.
- The mapping $F:V\to \mathbb{H}^n$ is linear.
- $Q \in \mathbb{H}^n$.

Properties

- A wide variety of control problems can be reduced to a few standard convex optimization problems involving linear matrix inequalities (LMIs).
- The resulting computational problems can be solved *numerically* very efficiently, using *interior-point methods*.
- These algorithms have many important properties, including small computation time, global solutions, provable lower bounds, certificates proving infeasibility, . . .
- An LMI formulation often provides an effective solution to a problem.

3 - 13 Singular Values and LMIs 2001.10.08.01

LMIs in vector form

Every LMI can be represented as

$$F(x) = x_1 F_1 + x_2 F_2 + \dots + x_m F_m < Q$$

In this case, $x \in \mathbb{R}^m$ and $F_i \in \mathbb{H}^n$.

Example

The inequality

$$\begin{bmatrix} x_1 - 3 & x_1 + x_2 & -1 \\ x_1 + x_2 & x_2 - 4 & 0 \\ -1 & 0 & x_1 \end{bmatrix} < 0$$

is an LMI.

In standard form, we can write this as

$$x_1 \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} + x_2 \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} < \begin{bmatrix} 0 & 0 & 1 \\ 0 & 4 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

3 - 14 Singular Values and LMIs 2001.10.08.01

Semidefinite programming (SDP)

Feasibility problems

Given the LMI

$$F(x) = x_1 F_1 + x_2 F_2 + \dots + x_m F_m < Q$$

- Find a feasible point $x \in \mathbb{R}^m$ such that the LMI is satisfied, or
- determine that there is no such x; that is, that the LMI is *infeasible*.

Linear objective problems

A general problem form is

minimize
$$c^*x$$
 subject to $x_1F_1+x_2F_2+\cdots+x_mF_m < Q$
$$Ax=b$$

- Linear cost function
- Equality constraints

3 - 15 Singular Values and LMIs 2001.10.08.01

LMIs define convex subsets of V

Theorem: The set

$$C = \left\{ x \in V \; ; \; F(x) < Q \right\}$$

is convex.

Proof: We need to show

$$x_1, x_2 \in \mathcal{C}, \quad \theta \in [0, 1] \qquad \Longrightarrow \qquad \theta x_1 + (1 - \theta) x_2 \in \mathcal{C}$$

Since F is linear,

$$F(\theta x_1 + (1 - \theta)x_2) = \theta F(x_1) + (1 - \theta)F(x_2) < \theta Q + (1 - \theta)Q = Q$$

Alternative proof: The image of a convex set under an affine map is convex.

3 - 16 Singular Values and LMIs 2001.10.08.01

LMIs as polynomial inequalities

Suppose $A \in \mathbb{H}^n$. Let $A_k \in \mathbb{R}^{k \times k}$ be the *submatrix* of A consisting of the first k rows and columns.

$$A > 0 \iff \det(A_k) > 0 \text{ for } k = 1, \dots, n.$$

Example:

$$\begin{bmatrix} 3 - x_1 & -(x_1 + x_2) & 1 \\ -(x_1 + x_2) & 4 - x_2 & 0 \\ 1 & 0 & -x_1 \end{bmatrix} > 0 \iff \begin{aligned} 3 - x_1 > 0 & (C) \\ (3 - x_1)(4 - x_2) - (x_1 + x_2)^2 > 0 & (A) \\ -x_1((3 - x_1)(4 - x_2) - (x_1 + x_2)^2) - (4 - x_2) > 0 & (B) \end{aligned}$$

3 - 17 Singular Values and LMIs 2001.10.08.01

LMIs with matrix variables

Consider the inequality

$$\begin{bmatrix} A^*X + XA & XB \\ B^*X & -I \end{bmatrix} < 0$$

Defining $F: \mathbb{S}^n \to \mathbb{S}^m$ by

$$F(X) = \begin{bmatrix} A^*X + XA & XB \\ B^*X & 0 \end{bmatrix} \implies F(X) < \begin{bmatrix} 0 & 0 \\ 0 & I \end{bmatrix}$$

Notes

- The most common form of LMI in systems and control.
- Easily recognizable.
- Can be more efficient.
- Accepted by software, such as the LMI Control Toolbox.
- Multiple LMIs $G_1(x) < 0, \ldots, G_n(x) < 0$ can be converted to one (block-diagonal) LMI

$$\operatorname{diag}(G_1(x),\ldots,G_n(x))<0$$

3 - 18 Singular Values and LMIs 2001.10.08.01

LPs can be cast as LMIs

The general linear program

minimize
$$c^*x$$

subject to $a_1^*x < b_1$
 $a_2^*x < b_2$
 \vdots
 $a_n^*x < b_n$

can be expressed as the SDP

minimize
$$c^*x$$

$$\begin{bmatrix} a_1^*x-b_1 & & & \\ & a_2^*x-b_2 & & \\ & & a_n^*x-b_n \end{bmatrix} < 0$$
 subject to

3 - 19 Singular Values and LMIs 2001.10.08.01

Schur Complements

Recall

$$Q>0 \text{ and } M-RQ^{-1}R^*>0 \qquad \iff \qquad \begin{bmatrix} M&R\\R^*&Q \end{bmatrix}>0$$

Example: The matrix $X \in \mathbb{S}^n$ satisfies

$$A^*X - XA + C^*C + XBB^*X < 0$$

if and only if

$$\begin{bmatrix} A^*X + XA + C^*C & XB \\ B^*X & -I \end{bmatrix} < 0$$

This is extremely useful and will reappear often.

3 - 20 Singular Values and LMIs 2001.10.08.01

Some standard LMIs

Suppose $F_i \in \mathbb{S}^n$, and

$$Z(x) = x_1 F_1 + x_2 F_2 + \dots + x_m F_m$$

Matrix norm constraint:

$$||Z(x)|| < 1 \qquad \Longleftrightarrow \qquad \begin{bmatrix} I & Z(x) \\ Z^*(x) & I \end{bmatrix} > 0$$

Matrix norm minimization:

$$\begin{array}{ll} \text{minimize} & t \\ \\ \text{subject to} & \begin{bmatrix} tI & Z(x) \\ Z^*(x) & tI \end{bmatrix} > 0 \end{array}$$

Maximum eigenvalue minimization: