3-1 Singular Values and LMIs 2001.10.08.01

Engr210a Lecture 3: Singular Values and LMIs

e Matrix norm

e Singular value decomposition (SVD)

e Minimal-rank approximation

e Sensitivity of eigenvalues and singular values
e Linear matrix inequalities (LMlIs)

e Semidefinite programming problems
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Norm of a matrix

Suppose A € R™*"™. The matrix norm of A is

A
14| .
A0 |||

Also called the operator norm or spectral norm.
Gives the maximum gain or amplification of A.

Properties

e (Consistent with usual Euclidean vector norm: if b € R", then
811 = v/ Amax(b°D) = V'

e For any x, we have ||Az| < [|A]|||z]|.

e Scaling: ||[cA|l = |cl|||A]l

e Triangle inequality: ||A + B|| < ||A|l + || B]||.

e Definiteness: ||A|| =0 <— A =0.

e Submultiplicative property: ||AB|| < ||All||B]|-
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Singular value decomposition

2001.10.08.01

Given A € C™*", we can decompose it into the singular value decomposition (SVD)

where

o U € C™ ™ is unitary,
o IV c C"" is unitary,

e X c R"™ " is diagonal.

Note that if m £ n, the matrix X is not square; it has the form

01

0

We choose 01 > 09 > --- > 0, > 0, where p = min{m, n}.

02

0

0

A=UXV"

or




3-4 Singular Values and LMIs 2001.10.08.01

Singular value decomposition 2

Given A € C™*", we can decompose it into the singular value decomposition (SVD)
A=UXV"

where U € C"™*™ is unitary, V € C"*" is unitary, and X € R™*" is diagonal.
With U = [ul Uy -+ - um} and V = [vl Vo - - fvn}, we have

p
A=USV* =Y o}
i=1
e 0, are the singular values of A.

e u,; are the left singular vectors of A.

e v; are the right singular vectors of A.

The number of nonzero singular values equals the rank of A.



3-5 Singular Values and LMIs 2001.10.08.01

Singular value decomposition 3

Given A € C™*", we can decompose it into the singular value decomposition (SVD)
A=UXV"

where U € C"™*™ is unitary, V € C"*" is unitary, and X € R™*" is diagonal.

We have
AA* =UXV*VIU = U U”
Hence

e 1, are the eigenvectors of AA*

e 0, =/ \(AA*) are the eigenvalues of AA*

Similarly A*A = VX*U*UXV* = VY*XV™ and v; are the eigenvectors of A*A, with
o; = v/ Ai(A*A) the eigenvalues of A*A.

If » = rank(A), then
e {uy,...,u,} are an orthonormal basis for range(A).

e {vy,...,v.} are an orthonormal basis for ker(A)".
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Linear mapping interpretation of SVD

x s Vi > N% A UZV»w

The SVD decomposes the linear mapping into

e Compute coefficients along directions v;.
e Scale coefficients by o;.

e Generate output along directions w;.

Note that, unlike the eigen-decomposition, input and output directions are different.

The maximum singular-value, o1 gives the norm of A.

A
Al = max 122
o

01

The minimum singular-value, o, gives the minimum gain of the matrix A.

Al
0 o]

Op
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Geometric interpretation of SVD

>

The matrix A € R"*" maps the unit sphere in R" to an ellipsoid in R"™.
{reR": |lz| =1} — {y;y=Av,zeR" [jz]| =1}
The semi-axes of the ellipse are u;, with length ;.

Note that the ellipse will be degenerate if A is not surjective.
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Algebraic interpretation of SVD

The SVD captures the numerical rank of a matrix A € C"*".
min{HA — Bl ; Be C"" rank(B) < k} = O)11

Theorem: The minimal rank & approximant to A is given by
k
Aj = Z TiU;V;
i=1

Hence, if a matrix A € R'Y*!Y has singular values
01 = 100, 0'2:35, 03 = 10, 0'4:2

and o5 < 0.00001, then we might say its numerical rank is 4.

1 2
A= [2 4.01]

has singular values 01 = 5, 09 = 0.002. lts optimal rank 1 approximant is

i 0.9984 2.0008
~12.0008 4.0096

Example:
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Proof: We have h
Ap = g TiU;v;
i=1

U ARV = diag(oy,...,04,0,...,0).

hence

So
U (A — Ap)V =diag(0,...,0,0,+1,...,0))

and hence ||A — Ay|| = o411

Now we wish to show that no matrix B can do better. Suppose rank(B) = k for some B,
and let {x1,...,x,_ i} be an orthonormal basis for ker(B). Since (n —k)+ (k+1) > n,

span{xy, ..., Ty} Nspanfvy, ..., vp 1} # ()

Let z be a unit vector in this intersection. Then Bz = (, and

k+1 k+1
Az =UXV"z = Z oi(viz)u; with Z(vfz)z =1
i=1 i=1
hence
k+1

|A—=B|? > (A= B)z|* = |Az|* = Y of(v}2)* > o7y
1=1
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Example: use of low rank approximants

Suppose A € RIW0X10000 s dense. Then computing the matrix-vector product Az is
computationally expensive; 10° multiplications.

But if A has singular values
01 = 100, 0'2:35, 03 = 10, 0'4:2

and o < 0.001 for £ > 5, then the optimal rank 4 approximant is

4
A4: E O'Z"LLZ"U;
1=1

Then, let
b= Asxr = 100(vix)uy + 35(viz)us + 10(vix)us + 2(viw)uy

and we have

|Az = bl| < []A = Aqffl|z]| < 0.001]|]]

which gives a relative error of 0.1% in 4 x 10* multiplications.
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Sensitivity of eigenvalues vs. singular values
Eigenvalues

Suppose
10 I 0o 0
A= [o 0] b= [1010 0]

ANi(A)=0foralli and Anx(A+ E)=0.1;

We have

A change of order 107!V in A resulted in a change of order 0.1 in its eigenvalues.

The position of the poles of a system can be extremely sensitive to the values of system
parameters.

Singular values

Since ||A|| = 01(A), we know from the triangle inequality that
01(A+ FE) < o1(A) + 01(F)

In this case, 01(A) =1 and o1(F) = 10717
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Linear matrix inequalities (LMIs)

An inequality of the form
F(z)<Q

where

e The variable x takes values in a real vector space V.
e The mapping F': V — H" is linear.
o () c H"

Properties

e A wide variety of control problems can be reduced to a few standard convex opti-
mization problems involving linear matrix inequalities (LMlIs).

e The resulting computational problems can be solved numerically very efficiently, using
interior-point methods.

e These algorithms have many important properties, including small computation time,
global solutions, provable lower bounds, certificates proving infeasibility, . ..

e An LMI formulation often provides an effective solution to a problem.
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LMIs in vector form

Every LMI can be represented as

F((E):$1F1—|—332F2—|—"'—|—37mFm<Q

In this case, x € R" and F; € H".

Example

The inequality

is an LMI.

In standard form, we can write this as

X1

(110

00
01

1
U

‘I‘IQ

0

O = O
e
o O O

_331—3 T+ To —1]
T+ To 562—4 0
—1

< 0

— O O
O =~ O
o O =
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Semidefinite programming (SDP)
Feasibility problems
Given the LMI
F(SC) =1+ 2o+ -+ x,F < Q

e Find a feasible point x € R™ such that the LMI is satisfied, or

e determine that there is no such z: that is, that the LMI is infeasible.

Linear objective problems
A general problem form is
minimize c'z
subject to =1 Fy + xoFh + -+ x,, b, < @
Ar =10

e linear cost function

e Equality constraints
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LMlIs define convex subsets of /

Theorem: The set
C:{xEV; F(aj)<Q}

IS convex.

Proof: We need to show
r1,15 € C, 0¢€ [O, 1] — 9$1+(1—9)3§2€C
Since F'is linear,

F@xi+ (1 —0)xy) =0F(21)+ (1 —0)F(22) <0Q+ (1 —-0)Q =@

Alternative proof: The image of a convex set under an affine map is convex.
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LMIs as polynomial inequalities

Suppose A € H". Let A;, € R*** be the submatrix of A consisting of the first k& rows
and columns.

Fact: A>0 <= det(Ay) >0fork=1,...,n.
Example:
3— X —(Il—i—ﬂig) 1 3—x1>0 (C)
—(ZIZl—I—ZL“Q) 4 — x9 0 > () <— (3—5131)(4—5[32) — (CBl—I—CCQ)Q > 0 (A)
1 0 — T

—21((3 — 21)(4 — 29) — (¥1 + 9)*) — (4 —12) >0 (B)

-~
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LMIs with matrix variables

Consider the inequality
A' X+ XA XB <0
B*X —1
Defining F' : S" — S by

F(X) = [A*);&XA XOB] — F(X)< [O O]

Notes
e The most common form of LMI in systems and control.
e Easily recognizable.
e Can be more efficient.
e Accepted by software, such as the LMI Control Toolbox.

e Multiple LMIs G1(x) < 0,...,G,(x) < 0 can be converted to one (block-diagonal)
LMI

diag(G1(x),...,Gy(x)) <0
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LPs can be cast as LMIs

The general linear program
minimize c'x

subject to ajx < b

OJ;.?? < by
a,x < by,
can be expressed as the SDP
minimize c¢'x
afr — by ]
asxr — b
2 2 <0

subject to
a,r —by
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Schur Complements

Recall
Q>0and M — RQ'R* >0 — M*R >0
R*Q
Example: The matrix X € §" satisfies
A X —XA+C'C+XBB*X <0

if and only if
A X+ XA+C*C XB <0
B*X —1I

This is extremely useful and will reappear often.
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Some standard LMIs
Suppose F; € S", and
Z((E) = $1F1 + .”EQFQ + -+ .”EmFm

Matrix norm constraint:

I Z(x)
| Z(x)|| <1 = [2*<x> 7 ] > 0
Matrix norm minimization:
minimize t

. tl  Z(x)
subject to [Z*(m) i ] > ()

Maximum eigenvalue minimization:
minimize ¢
subject to Z(x) —tI <0
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