Engr210a Lecture 4: State-space systems

- Representing systems as first-order ODEs
- Systems as maps
- Controllability and observability
- The order of ^a realization
- Minimal realizations
- Matrix-valued transfer functions
- Realizations for matrix transfer-functions

Linear first-order ODEs

System of differential equations

$$
\dot{x}(t) = Ax(t) + Bu(t)
$$

where

- $\bullet \ \ x(t) \in \mathbb{R}^n$ is called the *state*.
- $\bullet\;\;u(t)\in \mathbb{R}^m$ is called the *input signal* or *forcing function*.
- $\bullet~~ A \in \mathbb{R}^{n \times n}$ is the *generator* or *dynamics matrix*.
- $\bullet\ \ B\in\mathbb{R}^{n\times m}.$

This form is often called state-space form.

Mechanical systems

Mechanical system with k degrees of freedom undergoing small motions

 $M\ddot{q}(t) + D\dot{q}(t) + Kq(t) = F(t)$

where

- $\bullet\,\,q(t)\in\mathbb{R}^k$ represents the *configuration* or *generalized coordinates* of the system.
- \bullet M is the *mass matrix*.
- K is the *stiffness matrix*.
- \bullet $\;D$ is the damping matrix.

State-space form

Let the state be
$$
x(t) = \begin{bmatrix} q(t) \\ \dot{q}(t) \end{bmatrix}
$$
.
\n
$$
\dot{x}(t) = \begin{bmatrix} 0 & I \\ -M^{-1}K & -M^{-1}D \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ M^{-1} \end{bmatrix} F(t)
$$

Autonomous behavior

System behavior when $u(t)=0$ for all t.

 $\dot{x}(t) = Ax(t) \qquad \text{with initial condition} \,\, x(0) = x_0$

The solution is given by

$$
x(t) = \Phi_t(x_0)
$$

Note that

- $\bullet~~\Phi_t:\mathbb{R}^n\rightarrow\mathbb{R}^n$ maps initial state to state at time $t.$
- $\bullet~$ The map Φ_t is linear; hence we can represent it as a matrix.
- $\bullet~~\Phi_t$ is called the *state transition matrix*.

Autonomous behavior

The state transition matrix is

$$
\Phi_t = e^{At}
$$

where the *matrix exponential* is

$$
e^M = I + M + \frac{M^2}{2} + \frac{M^3}{3!} + \frac{M^4}{4!} + \dots
$$

This series always converges.

Properties

- $\bullet \;\; e^{M}$ is invertible.
- $\bullet \ \ e^0 = I$ for the zero matrix.
- $e^{M^*} = (e^M)^*$
- • \bullet $\frac{d}{dt}e^{At} = Ae^{At} = e^{At}A$
- $\bullet\;$ If M and N are square, then

$$
e^{M+N} = e^M e^N \qquad \Longleftrightarrow \qquad MN = NM
$$

Stability

The stability properties of the autonomous system

 $\dot{x}(t) = Ax(t) \qquad \text{with initial condition} \,\, x(0) = x_0$

are called internal stability.

The system is called *exponentially stable* if the state tends to zero faster than exponentially. That is, if there are constants $c_1, c_2 > 0$ such that

 $||x(t)|| \leq c_1 e^{-c_2 t} ||x_0||$

Fact: The system is exponentially stable if and only all of the eigenvalues of A have strictly negative real part. That is, if

 $\text{Re}(\lambda) < 0$ for all $\lambda \in \text{spec}(A)$

Recall

$$
\operatorname{spec}(A)=\Big\{\lambda\in\mathbb{C}\;;\;\lambda I-A\text{ is singular}\Big\}
$$

Systems as maps

The set of equations

 $\dot{x}(t) = Ax(t) + Bu(t) \qquad \text{with initial state} \ x(0) = 0.$

defines a map from input signal u on time interval $[0, t]$ to final state $x(t)$. Write

$$
\Upsilon_t: \mathcal{F}([0,t],\mathbb{R}^m) \to \mathbb{R}^n
$$

where $\mathcal{F}([a, b], \mathbb{R}^m) = \{u : [a, b] \to \mathbb{R}^m\}$ is the set of all \mathbb{R}^m valued functions on the interval $[a, b] \subset \mathbb{R}$.

For $t > 0$, the map Υ_t is linear, and is given by

$$
\Upsilon_t(u) = \int_0^t e^{A(t-\tau)}Bu(\tau) d\tau
$$

The question of controllability

 $\bullet\,$ Which states can be reached at time $t?$

Controllability

• The set of *reachable states* at time $t > 0$ is

$$
\mathcal{R}_t = \text{image}(\Upsilon_t)
$$

= $\{ \xi \in \mathbb{R}^n \; ; \text{ there exists } u \text{ such that } x(t) = \xi \}$

 $\bullet \ \mathcal{R}_t$ is a subspace of $\mathbb{R}^n.$

Facts

 $\bullet\ \ \mathcal{R}_t=\text{image}(C_{AB})$ where

$$
C_{AB} = [B \ AB \ \dots \ A^{n-1}B]
$$

The matrix C_{AB} is called the *controllability matrix*.

- $\bullet \;\; \mathsf{Write}\; \mathcal{C}_{AB} = \mathrm{image}(C_{AB}).$
- $\bullet~~\mathcal{R}_t$ is independent of time $t.$ The set \mathcal{C}_{AB} is called the *controllable subspace*.
- \bullet The system is called *controllable* if $C_{AB} = \mathbb{R}^n$.

Systems with inputs and outputs

General system form

 $\dot{x}(t) = Ax(t) + Bu(t) \qquad \text{with initial condition} \,\, x(0) = 0$ $y(t) = Cx(t) + Du(t)$

Here $x(t) \in \mathbb{R}^n$, $u(t) \in \mathbb{R}^m$, and $y(t) \in \mathbb{R}^p$.

Standard interpretation

- $\bullet\,$ System G is a 'black box' mapping signals u to signals $y.$
- $\bullet\ \ \textsf{If}\ x(0)=0\ \textsf{then}\ G$ is a linear map.
- $\bullet\;$ Write $G:\mathcal{F}\rightarrow\mathcal{F},$ and $y=Gu.$ Function spaces to be defined later.

General systems of ODEs

$$
y^{(n)} + a_{n-1}y^{(n-1)} + \cdots + a_1\dot{y} + a_0y = c_{n-1}u^{n-1} + \cdots + c_1\dot{u} + c_0u
$$

State-space form

$$
A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & \cdots & 0 & 1 \\ -a_0 & -a_1 & -a_{n-1} \end{bmatrix} \qquad B = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}
$$

$$
C = \begin{bmatrix} c_0 & c_1 & \cdots & c_{n-1} \end{bmatrix} \qquad D = 0
$$

Caveat

Not every system can be represented in state-space form. e.g.

$$
y(t)=\dot{u}(t)
$$

has no state-space form.

We will see more on this later.

Observability

General system form

 $\dot{x}(t) = Ax(t) + Bu(t) \qquad \text{with initial condition} \,\, x(0) = x_0$ $y(t) = Cx(t) + Du(t)$

The solution is

$$
y(t) = Ce^{At}x_0 + C \int_0^t e^{A(t-\tau)}Bu(\tau) d\tau + Du(t)
$$

As a map on signals y and u , we have

 $y = \Psi_t x_0 + \Lambda_t u$

Here $\Psi_t : \mathbb{R}^n \to \mathcal{F}([0,t],\mathbb{R}^p)$ and $\Lambda_t : \mathcal{F}([0,t],\mathbb{R}^m) \to \mathcal{F}([0,t],\mathbb{R}^p)$ are linear maps.

The question of observability

Given y and u, can we uniquely determine x_0 ? To find x_0 we need to solve the equation

$$
\Psi_t x_0 = y - \Lambda_t u
$$

There is a unique solution for x_0 if and only if $\ker(\Psi_t) = \{0\}$.

Observability

The set of *unobservable states* at time $t > 0$ is

$$
\mathcal{U}_t = \ker(\Psi_t)
$$

= $\{\xi \in \mathbb{R}^n ; \Psi_t \xi = 0\}$

- $\bullet \:\: \mathcal{U}_t$ is a subspace of $\mathbb{R}^n.$
- $\bullet\ \ \mathsf{If}\ \xi\in\mathcal{U}_t,$ then the initial condition x_0 and the initial condition $x_0+\xi$ will produce the same output on $[0, t]$ for every u .

Facts
\n•
$$
U_t = \text{ker}(O_{CA})
$$
 where $O_{CA} = \begin{bmatrix} C \\ CA^2 \\ C A^2 \\ \vdots \\ CA^{n-1} \end{bmatrix}$, the observability matrix.

- $\bullet\;$ Write $\mathcal{N_{CA}}=\mathrm{ker}(O_{CA}).$
- \bullet $\,\mathcal{U}_t$ is independent of time.
- $\bullet\ \ \textsf{If}\ \text{rank}(O_{CA})=n\ \textsf{then}\ \textsf{the}\ \textsf{system}\ \textsf{is}\ \textsf{called}\ \textsf{observable}.$

Systems as maps

Suppose G_1 and G_2 are state-space systems, with zero initial conditions. G_1 and G_2 are called equivalent if

 $G_1u = G_2u$ for all inputs u

Notes

- $\bullet\;$ Given a map G , there are many sets of matrices (A,B,C,D) which result in the same map.
- $\bullet~$ Any particular set of matrices (A,B,C,D) which represent G is called a *realization* for G .

State coordinate changes

Let G be the system

$$
\dot{x}(t) = Ax(t) + Bu(t)
$$

$$
y(t) = Cx(t) + Du(t)
$$

Let $z(t) = Tx(t)$ for some invertible matrix $T \in \mathbb{R}^{n \times n}$. Then

$$
\dot{z}(t) = TAT^{-1}z(t) + TBu(t)
$$

$$
y(t) = CT^{-1}z(t) + Du(t)
$$

State coordinate changes

Mapping

$$
(A, B, C, D) \qquad \mapsto \qquad (TAT^{-1}, TB, CT^{-1}, D)
$$

transforms from one realization for G to another.

Controllability and observability are preserved under state coordinate changes. That is, rank(C_{AB}) and rank(O_{CA}) are unchanged.

Example

$$
\dot{x}(t) = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} x(t) + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u(t)
$$

$$
y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} x(t) + u(t)
$$

Changing coordinates to

$$
z(t) = Tx(t) = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} x(t)
$$

we can represent the same map from u to y by

$$
\dot{z}(t) = \begin{bmatrix} -1 & -3 \\ 0 & -2 \end{bmatrix} z(t) + \begin{bmatrix} 1 \\ 2 \end{bmatrix} u(t)
$$

$$
y(t) = \begin{bmatrix} -1 & 2 \end{bmatrix} z(t) + u(t)
$$

System equivalence

When are two systems are equivalent?

Theorem: Suppose (A_1, B_1, C_1, D_1) and (A_2, B_2, C_2, D_2) are realizations for G_1 and G_2 respectively. Then

 G_1 and G_2 are equivalent $G_1 \Leftrightarrow$ $C_1e^{A_1t}B_1 = C_2e^{A_2t}B_2$ for all t and $D_1 = D_2$

Proof

We have, for any realization (A, B, C, D)

$$
y(t) = \int_0^t Ce^{A(t-\tau)}Bu(\tau) d\tau + Du(t)
$$

The \Leftarrow direction follows immediately.

For the \implies direction, clearly $D_1 = D_2$, since $D_1u(0) = D_2u(0)$ for all $u(0)$. We need to show that

$$
\int_0^t \left(C_1 e^{A_1(t-\tau)} B_1 - C_2 e^{A_2(t-\tau)} B_2 \right) u(\tau) d\tau = 0 \implies C_1 e^{A_1 t} B_1 - C_2 e^{A_2 t} B_2 = 0
$$

for all functions u and for all t for all t for all t

for all functions u and for all t

System equivalence 2

Proof continued

We want to show

$$
\int_0^t F(t-\tau) u(\tau) \, d\tau = 0 \text{ for all } u,t \qquad \Longrightarrow \qquad F(t) = 0 \text{ for all } t
$$

Compare this with

$$
Ax = 0 \text{ for all } x \qquad \Longrightarrow \qquad A = 0
$$

We will prove the case when F is scalar valued.

To show a contradiction, assume the above integral is zero for all u and t , yet there is some $t_0 \geq 0$ for which $F(t_0) \neq 0$. Pick

$$
u(t) = F(t_0 + 1 - t)
$$

and choose $t = t_0 + 1$. This gives $u(1) \neq 0$, and

$$
\int_0^{t_0+1} F(t_0+1-\tau)u(\tau) d\tau = \int_0^{t_0+1} |u(\tau)|^2 d\tau > 0
$$

which contradicts our assumption that the above integral is zero.

The proof in the matrix valued case is similar.

Removing uncontrollable states

The dynamic order or state-dimension of a state-space system is the dimension n of the generator matrix A.

If ^a system is not controllable, then there exists an equivalent lower-order realization.

Theorem: If $\dim(\mathcal{C}_{AB}) = r$, then we can choose coordinates so that

$$
\bar{A} = TAT^{-1} = \begin{bmatrix} \bar{A}_{11} & \bar{A}_{12} \\ 0 & \bar{A}_{22} \end{bmatrix} \qquad \qquad \bar{B} = TB = \begin{bmatrix} \bar{B}_1 \\ 0 \end{bmatrix}
$$
\n
$$
\bar{C} = CT^{-1} = \begin{bmatrix} \bar{C}_1 & \bar{C}_2 \end{bmatrix} \qquad \qquad \bar{D} = D
$$

where \bar{A} $\bar{A}_{11} \in \mathbb{R}^{r \times r}$, \bar{B} $B_1 \in \mathbb{R}^{r \times m}$.

The lower-order system $(\bar{A}% ,\partial_{A}\bar{A})$ $_{11},\bar{B}$ $_{1},\bar{C}%$ $_1,D)$ is equivalent to (A,B,C,D) , and is controllable. **Notes**

- •This representation is called *controllability form*.
- Equivalence follows from the representation, because

$$
\bar{C}e^{\bar{A}t}\bar{B} = \begin{bmatrix} \bar{C}_1 & \bar{C}_2 \end{bmatrix} \begin{bmatrix} e^{\bar{A}_{11}t} & ? \\ 0 & ? \end{bmatrix} \begin{bmatrix} \bar{B}_1 \\ 0 \end{bmatrix}
$$

$$
= \bar{C}_1 e^{\bar{A}_{11}t}\bar{B}_1
$$

Removing uncontrollable states

Example

The 2nd order state-space system

$$
\dot{x}(t) = \begin{bmatrix} -1 & -3 \\ 0 & -2 \end{bmatrix} x(t) + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u(t)
$$

$$
y(t) = \begin{bmatrix} -1 & 0 \end{bmatrix} x(t)
$$

represents the same map as the 1st order system

 $\dot{z}(t) = -z(t) + u(t)$ $y(t) = -x(t)$

The state component x_2 is uncontrollable. With initial condition $x(0) = 0$, the state component $x_2(t)=0$ for all t.

Proof

We first show that the controllable subspace is A -invariant.

$$
x \in \mathcal{C}_{AB} \qquad \Longrightarrow \qquad Ax \in \mathcal{C}_{AB}
$$

This holds because, if $x \in \mathcal{C}_{AB}$, then

$$
x \in \text{image } [B \ AB \ \dots \ A^{n-1}B].
$$

Hence there exist vectors w_1, w_2, \ldots, w_n , such that

$$
x = Bw_1 + ABw_2 + \dots + A^{n-1}Bw_n
$$

and therefore

$$
Ax = ABw_1 + A^2Bw_2 + \cdots + A^nBw_n.
$$

But A^n is a linear combination of $I, A, A^2, \ldots, A^{n-1}$

$$
A^{n} = \mu_{0} + \mu_{1}A + \mu_{2}A^{2} + \cdots + \mu_{n-1}A^{n-1}
$$

by the Cayley-Hamilton theorem. Hence Ax is the linear combination

$$
Ax = B(\mu_0 w_n) + AB(\mu_1 w_n + w_1) + \dots + A^{n-1}B(\mu_{n-1} w_n + w_{n-1})
$$

and thus $Ax \in \mathcal{C}_{AB}$ also.

Proof continued

Now choose coordinates $z = Tx$ such that

$$
\mathcal{C}_{AB} = \left\{ \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} \in \mathbb{R}^n \; ; \; z_2 = 0 \right\}
$$

Note that $\dim(\mathcal{C}_{AB}) = r$, and $z_1 \in \mathbb{R}^r$.

Partition TAT^{-1} compatibly with (z_1, z_2) . Then

$$
TAT^{-1}z = \begin{bmatrix} \bar{A}_{11} & \bar{A}_{12} \\ \bar{A}_{21} & \bar{A}_{22} \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} \in \mathcal{C}_{AB} \quad \text{for all } z \in \mathcal{C}_{AB}
$$

This holds if and only if

$$
\overline{A}_{21}z_1 + \overline{A}_{22}z_2 = 0 \qquad \text{for all } z \in \mathcal{C}_{AB}
$$
\n
$$
\overline{A}_{21}z_1 = 0 \qquad \text{for all } z_1 \in \mathbb{R}^r
$$
\n
$$
\overline{A}_{21} = 0
$$

Removing unobservable states

If $\dim(\mathcal{N}_{AB}) = n - r$, then we can choose coordinates so that

$$
A = \begin{bmatrix} A_{11} & 0 \\ A_{12} & A_{22} \end{bmatrix} \qquad B = \begin{bmatrix} B_1 \\ B_2 \end{bmatrix}
$$

$$
C = \begin{bmatrix} C_1 & 0 \end{bmatrix}
$$

where $A_{11} \in \mathbb{R}^{r \times r}$, $C_1 \in \mathbb{R}^{p \times r}$.

The lower-order system (A_{11}, B_1, C_1, D) is equivalent to (A, B, C, D) , and is observable. This representation is called *observability form*.

Proof

As for controllability, noting that the unobservable subspace is A -invariant.

Duality

The ideas of controllability and observability are called *dual*.

 (C, A) is observable \iff (A^*, C^*) is controllable

Another characterization of equivalence

Theorem: Suppose (A_1, B_1, C_1, D_1) and (A_2, B_2, C_2, D_2) are realizations for G_1 and G_2 respectively. Then

$$
G_1 \text{ and } G_2 \text{ are equivalent} \qquad \Longleftrightarrow \qquad \begin{array}{c} C_1 A_1^k B_1 = C_2 A_2^k B_2 \quad \text{ for all } k \geq 0 \\ \text{ and } D_1 = D_2 \end{array}
$$

The matrices CB, CAB, CA^2B, \ldots are called the *Markov parameters* for G. **Proof:** The \Leftarrow direction follows immediately from the previous lemma, since

$$
Ce^{At}B = CB + CABt + CA^2B\frac{t^2}{2} + \cdots
$$

For the \implies direction, we know

$$
C_1 e^{A_1 t} B_1 = C_2 e^{A_2 t} B_2 \qquad \qquad \text{for all } t
$$

$$
\implies \frac{d^k}{dt^k} C_1 e^{A_1 t} B_1 = \frac{d^k}{dt^k} C_2 e^{A_2 t} B_2 \qquad \text{for all } t \text{ and } k
$$

$$
\implies C_1 A_1^k e^{A_1 t} B_1 = C_2 A_2^k e^{A_2 t} B_2 \qquad \text{for all } t \text{ and } k
$$

$$
\implies C_1 A_1^k B_1 = C_2 A_2^k B_2 \qquad \text{for all } k
$$

with the last equality following from the previous one at $t = 0$.

Minimal realizations

A realization (A, B, C, D) for a system G is called *minimal* if there does not exist a realization for G with smaller state dimension.

Theorem:

 (A, B, C, D) is minimal \iff (C, A) is observable and (A, B) is controllable

Notes

- $\bullet\,$ We have already shown the \implies direction.
- $\bullet\,$ We will use the equality of the Markov parameters to prove the \iff direction.
- $\bullet~$ The minimum n for which a realization exists is a property of the map $G.$

Proof

We need to show the \iff direction. Suppose (A, B, C, D) is controllable and observable, and $A \in \mathbb{R}^{n \times n}$. We will show that if (A_1, B_1, C_1, D_1) is an equivalent realization, then it must have order at least n .

We know $CA^kB = C_1A_1^kB_1$ for all $k \geq 0$. Hence

$$
\begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix} \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix} = \begin{bmatrix} C_1 \\ C_1A_1 \\ \vdots \\ C_1A_1^{n-1} \end{bmatrix} \begin{bmatrix} B_1 & A_1B_1 & \cdots & A_1^{n-1}B_1 \end{bmatrix}
$$

which is
$$
O_{CA}C_{AB} = O_{C_1A_1}C_{A_1B_1}
$$

For any two matrices P and Q , we have Sylvester's inequality:

$$
rank(P) + rank(Q) - n \le rank(PQ) \le min\{rank(P), rank(Q)\}
$$

We know that $rank(O_{CA}C_{AB}) \geq n$, from the left Sylvester inequality. This implies that $rank(O_{C_1A_1}C_{A_1B_1}) \geq n$, which implies that

 $rank(O_{C_1A_1}) \geq n$ and $rank(C_{A_1B_1}) \geq n$

from the right Sylvester inequality. Hence $O_{C_1A_1}$ has at least n columns and $C_{A_1B_1}$ has at least n rows, and therefore A_1 is at least $n \times n$.

Transfer functions

Recall the Laplace transform of f

$$
\hat{f}(s) = \int_0^\infty f(t)e^{-st} dt
$$

- The Laplace transform is ^a linear map.
- if \ddot{f} $\dot{f}(t)$ has a Laplace transform, then it is given by $s\hat{f}$ $f(s) - f(0)$.

Applying the Laplace transform to

 $\dot{x}(t) = Ax(t) + Bu(t) \qquad \text{with initial condition} \,\, x(0) = 0$ $y(t) = Cx(t) + Du(t)$

gives

$$
\hat{s}\hat{x}(s) = A\hat{x}(s) + B\hat{u}(s)
$$

$$
\hat{y}(s) = C\hat{x}(s) + D\hat{u}(s)
$$

and

$$
\hat{y}(s) = \hat{G}(s)u(s) \qquad \text{where } \hat{G}(s) = C(sI - A)^{-1}B + D
$$

Write
$$
\left[\frac{A \mid B}{C \mid D}\right](s) := C(sI - A)^{-1}B + D.
$$

Transfer functions

The function \hat{G} $G:\mathbb{C}\rightarrow \mathbb{C}^{p\times m}$ is called the *transfer function*: \hat{G} $(s) = C(sI - A)^{-1}B + D$

Rational functions

 $\bullet~$ A scalar function $\hat{g}:\mathbb{C}\rightarrow\mathbb{C}$ is called *rational* if

$$
\hat{g}(s) = \frac{b_m s^{m-1} + \dots + b_1 s + b_0}{s^n + a_{n-1} s^{n-1} + \dots + a_0}
$$

It is called real-rational if the coefficients are real.

 $\bullet~~\hat{g}$ is called *proper* if $n\geq m$, and *strictly proper* if $n>m$.

Notes

- $\bullet~$ We call the matrix-valued function \hat{G} G rational if each of its entries is rational.
- \bullet The function \hat{G} corresponding to ^a state-space systems is rational, since

$$
\left[(sI - A)^{-1} \right]_{ij} = \frac{1}{\det(sI - A)} \times \text{cofactor of element } ij
$$

where each cofactor is the determinant of a submatrix of $sI - A$.

 $\bullet\;$ We call \hat{G} proper if each of its entries is proper.

Equivalence of transfer functions

Given G_1 and G_2 defined by state-space representations (A_1, B_1, C_1, D_1) and (A_2, B_2, C_2, D_2) respectively,

> G_1 and G_2 are equivalent $\qquad \iff \qquad \hat{G}$ $_1(s)=\hat{G}$ $_{2}(s)$ for all s

Proof

We know

$$
G_1 \text{ and } G_2 \text{ are equivalent} \qquad \Longleftrightarrow \qquad \qquad C_1 e^{A_1 t} B_1 = C_2 e^{A_2 t} B_2 \text{ for all } t
$$
 and
$$
D_1 = D_2
$$

Since the Laplace transform of e^{At} is $(sI - A)^{-1}$, this is equivalent to

$$
C_1(sI - A_1)^{-1}B_1 = C_2(sI - A_2)^{-1}B_2
$$
 for all *s* and $D_1 = D_2$

which holds if and only if

$$
C_1(sI - A_1)^{-1}B_1 + D_1 = C_2(sI - A_2)^{-1}B_2 + D_2
$$

(The 'if' part follows by equality as $s \to \infty$.)

Realizations for scalar systems

Given a scalar-valued (often called SISO) strictly proper transfer function \hat{g}

$$
\hat{g}(s) = \frac{c_{n-1}s^{n-1} + \dots + c_0}{s^n + a_{n-1}s^{n-1} + \dots + a_0}
$$

there exists a state-space realization (A, B, C, D) which has order n.

Proof

It is

$$
A = \begin{bmatrix} 0 & 1 & 0 \\ & \ddots & \ddots \\ 0 & 0 & 1 \\ -a_0 & -a_1 & -a_{n-1} \end{bmatrix} \qquad B = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}
$$

$$
C = \begin{bmatrix} c_0 & \cdots & c_{n-1} \end{bmatrix} \qquad D = 0
$$

Non-strictly proper \hat{g}

If \hat{g} is proper but not strictly proper, we can write it as

$$
\hat{g}(s) = \hat{g}_1(s) + D
$$

where \hat{g}_1 is strictly proper.

Realizations

To realize a matrix-valued transfer function \hat{G} G_\cdot we can do so in blocks.

Columns

Suppose

$$
\hat{G}(s) = \begin{bmatrix} \hat{G}_1(s) & \hat{G}_2(s) \end{bmatrix}
$$

and we have realizations (A_1,B_1,C_1,D_1) and (A_2,B_2,C_2,D_2) for \hat{G} $\hat{\widetilde G}_1$ and $\hat G$ $\mathcal{I}2$. Then a realization for G is

$$
\begin{bmatrix} \hat{G}_1(s) & \hat{G}_2(s) \end{bmatrix} = \begin{bmatrix} A_1 & 0 & B_1 & 0 \\ 0 & A_2 & 0 & B_2 \\ \hline C_1 & C_2 & D_1 & D_2 \end{bmatrix}
$$

Rows

Suppose \hat{G} $(s) = \begin{bmatrix} \hat{G}_1(s)\ \hat{G}_2(s) \end{bmatrix}$. Then a realization for G is

$$
\begin{bmatrix} A_1 & 0 & B_1 \\ 0 & A_2 & B_2 \\ \hline C_1 & 0 & D_1 \\ 0 & C_2 & D_2 \end{bmatrix}
$$

Realizations 2

A procedure for realization of a rational transfer matrix \hat{G} $\int \,$ is

- 1. Realize each element \hat{G} $_{ij}$, which is a scalar transfer function.
- 2. Realize the columns.
- 3. Realize the row of columns.

Caveat

The resulting realization may be non-minimal. For example,

$$
\hat{G}(s) = \begin{bmatrix} \frac{1}{s+1} & \frac{2}{s+1} \end{bmatrix}
$$

The previous construction leads to

$$
\hat{G}(s) = \begin{bmatrix} -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ \hline 1 & 2 & 0 & 0 \end{bmatrix}
$$

but ^a lower-order realization is

$$
\hat{G}(s) = \left[\begin{array}{c|c} -1 & 1 & 2\\ \hline 1 & 0 & 0 \end{array}\right]
$$

Representation of systems

- View systems as linear operators on signal spaces. The map between inputs and outputs defines the system.
- Every proper rational transfer matrix has ^a state-space realization.
- Every state-space system has ^a proper transfer function representation.

Platonic theory of systems

- Analogous to the idea of rank of ^a matrix, we have the notion of order of ^a linear system.
- It can go wrong in similar ways; e.g.

$$
\dot{x}(t) = \begin{bmatrix} -1 & -3 \\ 0.1 & -2 \end{bmatrix} x(t) + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u(t)
$$

$$
y(t) = \begin{bmatrix} -1 & 0 \end{bmatrix} x(t)
$$

$$
C_{AB} = \begin{bmatrix} B \ AB \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 0 & 0.1 \end{bmatrix}
$$
which has singular values $\sigma = \begin{bmatrix} 1.41 & 0 \\ 0 & 0.07 \end{bmatrix}$

• We need ^a notion of approximation for systems. More later. . .