Engr210a Lecture 5: Linear analysis

- Norms on vectors, signals, and matrices
- Inner products
- Topology
- Convergence and completeness
- Bounded operators
- Induced norms

Norms

A *norm* $\|\cdot\|$ on a vector space V is a function mapping $V \to [0, \infty)$ which satisfies

- $\bullet \;\;$ *Definiteness:* $\|v\| = 0$ if and only if $v = 0$
- \bullet *Homogeneity:* $\|\alpha v\| = |\alpha| \|v\|$
- \bullet *Triangle inequality:* $\|u+v\|\leq \|u\|+\|v\|$

for all $u, v \in \mathcal{V}$ and $\alpha \in \mathbb{R}$.

Examples on \mathbb{C}^n

- • $\bullet \ \ \ \textit{Euclidean norm:} \ \Vert v \Vert_2 = v^* v = \big(|v_1|^2 + \cdots + |v_n|^2 \big)^{\frac{1}{2}}$ 2
- • $\bullet \;$ p -norm: $\|v\|_p = \left(|v_1|^p + \cdots + |v_n|^p\right)^{\frac{1}{p}}$ $\,p$
- 1-norm: $||v||_1 = |v_1| + \cdots + |v_n|$
- • ∞ -norm: $||v||_{\infty} = \max\{|v_k| \; ; \; k = 1, \ldots, n\}$

Norms on matrices

For a matrix $A \in \mathbb{C}^{m \times n}$, we define

• Frobenius norm:
$$
||A||_F = (\text{trace}(A^*A))^{\frac{1}{2}}
$$

\nIf $A = [a_1 \ a_2 \ ... \ a_n]$, then
\n
$$
||A||_F = (||a_1||_2^2 + ||a_2||_2^2 + \dots + ||a_n||_2^2)^{\frac{1}{2}}
$$
\n
$$
= \left(\sum_{i=1}^m \sum_{j=1}^n |A_{ij}|^2\right)^{\frac{1}{2}}
$$

• *Spectral norm:*

$$
||A|| = \max\left\{\lambda^{\frac{1}{2}}; \ \lambda \text{ is an eigenvalue of } A^*A\right\}
$$

= $\max\left\{\lambda^{\frac{1}{2}}; \ \lambda \text{ is an eigenvalue of } AA^*\right\}$
= $\max_{x \neq 0} \frac{||Ax||_2}{||x||_2}$

Norms on signals

The L_{∞} space of signals on $(-\infty, \infty)$ is

$$
L_\infty(-\infty,\infty)=\Big\{u:\mathbb{R}\to\mathbb{C}^n\;;\; \|u\|_\infty=\hbox{ess}\sup_{t\in\mathbb{R}}\lVert u(t)\rVert_\infty\hbox{ is finite}\Big\}
$$

Notes

- $\bullet \;\; {\rm ess\,sup}_{t\in \mathbb{R}} \| u(t)\|_\infty < 1$ means $\| u(t)\|_\infty < 1$ at all t except a finite set of points $\{t_i\}.$
- Corresponds to the *peak* of ^a signal.
- The *spatial* norm is also the [∞]-norm.

The L_2 space of signals on $(-\infty, \infty)$ is

$$
L_2(-\infty,\infty)=\left\{u:\mathbb{R}\to\mathbb{C}^n\;;\; \|u\|_2=\left(\int_{-\infty}^\infty\lVert u(t)\rVert_2^2\;dt\right)^{\frac{1}{2}}\;\text{is finite}\right\}
$$

Notes

- $\bullet \hspace{0.15cm} u(t)$ must decay to zero as $t\rightarrow \infty$ for $\|u\|_{2}$ to be finite.
- Corresponds to the *total energy* in ^a signal.

Inner product spaces

An inner product $\langle \cdot, \cdot \rangle$ on a vector space V is a function mapping $V \times V \to \mathbb{C}$ which satisfies

- $\blacklozenge \; \langle v, v \rangle \ge 0$, with $\langle v, v \rangle = 0$ if and only if $v = 0$
- $\bullet \ \ \left\langle v, \alpha_1 u_1 + \alpha_2 u_2 \right\rangle = \alpha_1 \langle v, u_1 \rangle + \alpha_2 \langle v, u_2 \rangle$
- $\bullet \ \ \langle u, v \rangle$ is the complex conjugate of $\langle v, u \rangle$

for all $u_1, u_2, u, v \in \mathcal{V}$ and $\alpha_1, \alpha_2 \in \mathbb{R}$.

Standard facts

- $\bullet~$ The inner-product captures the idea of *angle* between two vectors. If $\langle u, v \rangle = 0$ we say u, ^v are *orthogonal*.
- $\bullet\;$ We can define $\|v\|=\langle v,v\rangle^{\frac{1}{2}}.$ This is a norm; i.e. it satisfies the required properties of ^a norm.
- *The Cauchy-Schwartz Inequality:*

 $|\langle u, v \rangle| \leq ||u|| ||v||$

Examples of inner product spaces

- $\bullet~$ Euclidean space: $\langle x, y \rangle = x^*y.$ The corresponding norm is the 2-norm.
- \bullet Matrices $C^{m\times n}\colon\left\langle A,B\right\rangle =\text{Trace}(A^*B).$ The corresponding norm is the Frobenius norm.

The space L_2

• The inner product on $L_2(-\infty,\infty)$ is

$$
\langle x, y \rangle = \int_{-\infty}^{\infty} (x(t))^{*} y(t) dt
$$

•
$$
L_2[0, \infty)
$$
 is a subspace of $L_2(-\infty, \infty)$.

The open ball

Suppose V is a normed space. The *open ball* $B(x, \varepsilon) \subset V$ is the set

$$
B(x,\varepsilon) = \left\{ y \in \mathcal{V} ; \ \|x - y\| < \varepsilon \right\}
$$

We say the ball has *radius* ε.

Example: In \mathbb{R}^2 , with the ∞ -norm, the ball of radius one at the origin is the square

$$
B(0,1) = \left\{ (x_1, x_2) \in \mathbb{R}^2 \mid |x_1| < 1 \text{ and } |x_2| < 1 \right\}
$$

Note that the boundary is not included.

Interior points

Suppose $P \subseteq V$. Then the point $x \in P$ is an *interior point* if

there exists $\varepsilon > 0$ such that $B(x, \varepsilon) \subset P$

Examples

 $\bullet\;$ If P is the usual unit disk in \mathbb{R}^2 including boundary

$$
\{(x_1, x_2) \in \mathbb{R}^2 \mid x_1^2 + x_2^2 \le 1\}
$$

Then the interior points are those points x which satisfy $x_1^2 + x_2^2 < 1$.

 $\bullet\;$ If P is the plane $x_3=0$ in $\mathbb{R}^3,$ then P has no interior points.

Notes

- $\bullet~$ In finite dimensional space, the set of interior points of a set P is the same no matter which norm is used in the definition of the ball.
- In infinite dimensions, this is not true in general.

Open sets

The subset $P \subseteq V$ is called *open* if every point $x \in P$ is an interior point.

Examples

- \bullet The *open ball* $B(x,\varepsilon)$ *i*s open for all $x\in V$ and all $\varepsilon>0.$
- $\bullet\;$ The interval $(a,b)\subset\mathbb{R}=\{x\in\mathbb{R}\;;\;a< x< b\}$ is open.
- $\bullet~$ The subset of \mathbb{R}^2 defined by

$$
\{(x_1, x_2) \; ; \; a < x_1 < b; x_2 = 0\}
$$

is *not open*.

Closure points

A point $x \in V$ is called a *closure point* of the subset $P \subseteq V$ if $B(x,\varepsilon) \cap P \neq \emptyset$ for all $\varepsilon > 0$.

That is, x is a closure point of P if every open ball around x intersects with P.

Example of closure points

 $\bullet~$ The closure points of the half-space in \mathbb{R}^2

 $\{(x_1, x_2) ; x_1 < b\}$

is the half-space

 $\{(x_1, x_2) : x_1 \leq b\}$

Closed sets

The subset $P \subseteq V$ is called *closed* if every closure point x of P is an element of P.

Facts

- The complement of an open set is closed and the complement of ^a closed set is open.
- $\bullet\,$ The whole space ${\cal V}$ is both closed and open.
- $\bullet\;$ If P_1 and P_2 are open, then both $P_1\cap P_2$ and $P_1\cup P_2$ are open.
- If P_1 and P_2 are closed, then both $P_1 \cap P_2$ and $P_1 \cup P_2$ are closed.

Caveat:

The intersection of an infinite number of open sets may not be open; for example, $\bigcap \{(1/k, 1/k) \subset \mathbb{R}$; $k = 1, 2, \dots \} = \{0\}$ is not open.

Convergence

The sequence of elements $\{v_0, v_1, v_2, \ldots, v_i \in \mathcal{V}\}\)$ in a normed space $\mathcal V$ *converges* if there exists an element $x \in \mathcal{V}$ such that limit

$$
\lim_{k \to \infty} ||v_k - x|| = 0
$$

Note that

- $\bullet\,$ Convergence in ${\mathcal V}$ is defined in terms of convergence of real numbers.
- Whether ^a sequence converges or not depends on which norm is used.
- $\bullet\;$ We need to know x to apply this definition.

Cauchy sequences

The sequence $\{v_0, v_1, v_2, \ldots, \}$ is *Cauchy* if for any $\varepsilon > 0$,

there exists N such that $||v_i - v_j|| < \varepsilon$ for all $i, j > N$

Notes

• A Cauchy sequence is one that *appears to converge*.

Facts

- Every convergen^t sequence is Cauchy.
- $\bullet \;$ In a closed subset P of a normed space, every Cauchy sequence converges.

Completeness

The space V is called *complete* if every Cauchy sequence converges.

- A complete normed space is called ^a *Banach space*.
- A complete inner-product space is called ^a *Hilbert space*.

Example

The inner-product space

$$
\mathcal{W} = \Big\{ w \in L_2[0,\infty) \; ; \; \text{ there exists } T > 0 \text{ such that } w(t) = 0 \text{ for all } t \geq T \Big\}
$$

is not complete.

To see this, consider the sequence $\{w_0, w_1, \dots\} \subset \mathcal{W}$

$$
w_k(t) = \begin{cases} e^{-t} & \text{for } 0 \le t \le k \\ 0 & \text{otherwise} \end{cases}
$$

This sequence is Cauchy, since, for $l < k$

$$
||w_k - w_l||^2 = \int_l^k e^{-2t} dt
$$

= $\frac{1}{2} (e^{-2l} - e^{-2k})$

with a similar result for $k < l$, and hence $||w_k - w_l|| \le e^{-\min\{k,l\}}$.

The sequence $\{w_0, w_1, \dots\} \subset L_2[0, \infty)$, and in that space it converges to the function $w(t) = e^{-t}$. But $w \notin W$ and hence W is not complete.

Operators

Linearity

The mapping $F: \mathcal{V} \to \mathcal{Z}$ is called *linear* if

$$
F(\alpha_1 v_1 + \alpha_2 v_2) = \alpha_1 F(v_1) + \alpha_2 F(v_2)
$$

for all $v_1, v_2 \in \mathcal{V}$ and $\alpha_1, \alpha_2 \in \mathbb{R}$.

Boundedness

The mapping $F: \mathcal{V} \to \mathcal{Z}$ is called *bounded* if there exists $K > 0$ such that $||F(v)|| \leq K||v||$

for all $v \in \mathcal{V}$.

- A bounded linear map is often called ^a linear *operator*.
- $\bullet\;$ If F is linear, we often omit the brackets around its argument, and write $Fv=F(v)$, as in matrix multiplication.

5 - 15 Linear analysis 2001.10.10.01

Induced-norms

The *induced-norm* of ^a linear operator is

$$
||F|| = \sup_{v \neq 0} \frac{||Fv||}{||v||}
$$

This is also often called the *operator norm*.

Notes

 \bullet $\|F\|$ measures the *maximum amplification* or *gain* of $F.$

Examples

- $\bullet\ \;$ If $M:\mathbb{R}^n\to\mathbb{R}^m$ is a linear operator, and we put the 2-norm on \mathbb{R}^m and \mathbb{R}^n , then $||M|| = \overline{\sigma}(M)$ the maximum singular value of M
- $\bullet\;$ If we use the ∞ -norm on \mathbb{R}^m and \mathbb{R}^n , then

$$
||M||_{\infty \to \infty} = \max_{1 \le i \le m} \sum_{j=1}^{n} |M_{ij}|
$$

Interpretation of the induced [∞]**-norm**

The induced ∞ -norm of a matrix M is

Interpretations

- $\bullet\,$ If x fits within a square box of half-width $1,$ then Mx fits within a square box of half-width $||M||_{\infty\rightarrow\infty}$.
- $\bullet~$ The worst-case unit-norm x has the form $x_i = \pm 1.$

Example

$$
M = \begin{bmatrix} -1 & 2 & -6 \\ 0 & -2 & 1 \end{bmatrix} \qquad ||M|| = 9 \qquad \text{Worst-case } x = \begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix}
$$

The induced [∞]**-norm of ^a linear system**

Recall the ∞ -norm of a signal $w \in L_{\infty}[0,\infty)$ is $\|w\|_{\infty}=\operatorname{ess} \operatorname{sup}$ t $\|w(t)\|_\infty$ $=$ ess sup t sup i $|w_i(t)|$

Consider the state-space linear system G given by

$$
\dot{x}(t) = Ax(t) + Bu(t)
$$

$$
y(t) = Cx(t)
$$

with u and y scalar real-valued signals.

Suppose we know the $||u||_{\infty}$; that is, the worst-case peak of u is given by

 $|u(t)| \leq u_{\text{peak}}$

We would like to find the worst-case peak value of the output signal y . This is given by

$$
u_{\mathsf{peak}} \|G\|_{\infty\to\infty}
$$

How do we compute $||G||_{\infty\to\infty}$?

The induced [∞]**-norm of ^a linear system**

Recall G can be represented as the convolution

$$
(Gu)(t) = \int_0^t g(t - \tau)u(\tau) d\tau
$$

where $g(t) = Ce^{At}B$ is the *impulse response* of *G*.

Theorem

The induced L_{∞} norm of G is the 1-norm of the impulse response.

$$
||G||_{\infty \to \infty} = ||g||_1 = \int_0^\infty |g(t)| dt
$$

Proof: We have

$$
|y(t)| = \left| \int_0^t g(t - \tau)u(\tau) d\tau \right|
$$

\n
$$
\leq \int_0^t |g(t - \tau)||u(\tau)| d\tau
$$

\n
$$
\leq \int_0^\infty |g(t - \tau)| d\tau ||u||_{\infty} = ||g||_1 ||u||_{\infty}
$$

Hence we have $||G||_{\infty\to\infty} \leq ||g||_1$.

5 - 19 Linear analysis 2001.10.10.01

Proof continued

We have shown that $||G||_{\infty\to\infty}\leq ||g||_1$. We need to show that $||G||_{\infty\to\infty}\geq ||g||_1$. Ideally we would like to find u such that

$$
||y||_{\infty} = ||g||_1 ||u||_{\infty}
$$

We need only consider u with $||u||_{\infty} = 1$. In fact we will show that for any $\varepsilon > 0$, we can find a u such that

$$
||y||_{\infty} \ge ||g||_1 - \varepsilon
$$

Choose t such that

$$
\int_0^t |g(t-\tau)| d\tau \ge ||g||_1 - \varepsilon
$$

and set $u(\tau) = \text{sgn}(g(t-\tau))$. Then

$$
y(t) = \int_0^t g(t-\tau)u(\tau)\,d\tau = \int_0^t \left|g(t-\tau)\right|d\tau
$$

Since y is continuous, we have

$$
||y||_{\infty} \ge ||g||_1 - \varepsilon
$$

In general, the optimal input on $[0, T]$ is $u(t) = sgn(g(T - t))$. Note, this is *not* a sinusoid.

Example: mass-spring system

We have, with $m = 1$, $d = 0.2$ and $k = 0.2$,

$$
A = \begin{bmatrix} 0 & 1 \\ -k/m & -d/m \end{bmatrix} \qquad B = \begin{bmatrix} 0 \\ 1/m \end{bmatrix}
$$

$$
C = \begin{bmatrix} 1 & 0 \end{bmatrix} \qquad D = 0
$$

Numerically, we find $||g||_1 = 1.447$ and $||y||_{\infty} = 1.430$.

