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Engr210a Lecture 5: Linear analysis

e Norms on vectors, signals, and matrices
e |nner products

e Topology

e (Convergence and completeness

e Bounded operators

e Induced norms
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Norms

A norm ||-|| on a vector space V is a function mapping V — [0, co) which satisfies
e Definiteness: ||v|| = 0 if and only if v =0
e Homogeneity: ||av| = |a|||v]]

e Triangle inequality: ||u+ v|| < ||u|| + ||v||
for all u,v € V and a € R.
Examples on C"

1
e FEuclidean norm: ||v||s = v*v = (\01\2 Tt |Un‘2)2

1
o p-norm: |[vfl, = (jor]? + -+ fou])”

e l-norm: ||v||y = |v1]| + -+ + |vy]

o oo-norm: ||v]|ee = max{|vy|; k=1,...,n} B
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Norms on matrices

For a matrix A € C™*", we define

1
e Frobenius norm: ||Allp = (trace(A*A))?
If A= [a,l as ... an}, then

1
2
[ Alle = (laally + lasli3 + - + llaul3)
m n %
- (X 2mr)
i=1 j=1
e Spectral norm:
|A|l = max{)\% . A is an eigenvalue of A*A

= max{)\% .\ is an eigenvalue of AA*}
|
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Norms on signals

The L space of signals on (—o0, 00) is

Lo (—00, 00) = {u R — C"; || = esssupl|u(t)]| is ﬁnite}
teR

Notes

® esssupsep||u(t)]|o < 1 means ||u(t)||oo < 1 at all ¢ except a finite set of points {¢;}.
e (Corresponds to the peak of a signal.

e The spatial norm is also the co-norm.

The Ly space of signals on (—o0, 00) is

1

La(-00,00) = {u R~ € Jula = [ Ju(t)f dt) " i e}

© 9]

Notes

e u(t) must decay to zero as t — oo for ||ul|s to be finite.

e Corresponds to the total energy in a signal.
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Inner product spaces

An inner product (-,-) on a vector space V is a function mapping ¥V x V — C which
satisfies

e (v,v) >0, with (v,v) =0 if and only if v =0
o (v, iUl + avug) = a1 (v, u1) + as(v, us)
e (u,v) is the complex conjugate of (v, u)

for all wy, us, u,v € V and oy, as € R.

Standard facts

e The inner-product captures the idea of angle between two vectors. If {(u,v) =0 we
say u,v are orthogonal.

Do —

e We can define ||v|| = (v, v)
of a norm.

. This is a norm; i.e. it satisfies the required properties

e The Cauchy-Schwartz Inequality:

[{u, v)] < Jlullllv]]
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Examples of inner product spaces
e FEuclidean space: (z,y) = x*y. The corresponding norm is the 2-norm.

e Matrices C"*": (A, B) = Trace(A*B). The corresponding norm is the Frobenius
norm.

The space L,

e The inner product on Lo(—00, 00) is

o) = | " (e(0) () dt

o0

e [,5|0,00) is a subspace of Ly(—00,00).
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The open ball

Suppose V' is a normed space. The open ball B(x,c) C V is the set

Blo.e)={yeV: |o—yll <c
We say the ball has radius .

Example: In R?, with the co-norm, the ball of radius one at the origin is the square

B(O,l):{(x1,x2)€R2 21| < 1 and |x2|<1} ER N

Note that the boundary is not included.
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Interior points

Suppose P C V. Then the point x € P is an interior point if

there exists € > 0 such that B(x,e) C P

Examples

e If P is the usual unit disk in R? including boundary
{(xl,xg) cR* zi+15< 1}
Then the interior points are those points x which satisfy 2§ + 23 < 1.
o If P is the plane z5 = 0 in R?, then P has no interior points.
Notes

e In finite dimensional space, the set of interior points of a set P is the same no matter
which norm is used in the definition of the ball.

e In infinite dimensions, this is not true in general.
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Open sets
The subset P C V is called open if every point € P is an interior point.
Examples
e The open ball B(x,¢) is open for all x € V and all € > 0.
e The interval (a,b) CR={x € R; a <z < b} is open.
e The subset of R? defined by
{(z1,22) ; a <z < b2 =0}
Is not open.
Closure points

A point ©x € V is called a closure point of the subset P C V if
B(z,e) N P # () for all € > 0.

That is, = is a closure point of P if every open ball around z intersects with P.
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Example of closure points
e The closure points of the half-space in R?

{(z1,29) ; x1 < b}

is the half-space
{(z1,22) ; 21 < b}

Closed sets

The subset P C V' is called closed if every closure point z of P is an element of P.

Facts

e The complement of an open set is closed and the complement of a closed set is open.
e The whole space V is both closed and open.

e |f P, and P, are open, then both P, N P and P, U P, are open.

o If P, and P are closed, then both P, N P and Py U P, are closed.

Caveat:

The intersection of an infinite number of open sets may not be open; for example,

N{(1/k,1/k) CR; k=1,2,...} = {0} is not open.
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Convergence

The sequence of elements {vgy, v1,v2,..., ; v; € V} in a normed space V converges if
there exists an element x € ) such that limit

lim ||op — x| =0
k—o00

Note that

e Convergence in V is defined in terms of convergence of real numbers.
e Whether a sequence converges or not depends on which norm is used.

e \We need to know x to apply this definition.
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Cauchy sequences

The sequence {vg, vy, vo, ..., } is Cauchy if for any € > 0,

there exists IV such that |vi —vj]| <eforalli,j >N

Notes

e A Cauchy sequence is one that appears to converge.

Facts

e Every convergent sequence is Cauchy.

e In a closed subset P of a normed space, every Cauchy sequence converges.

Completeness

The space V is called complete if every Cauchy sequence converges.

e A complete normed space is called a Banach space.

e A complete inner-product space is called a Hilbert space.

2001.10.10.01
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Example

The inner-product space
W = {w € L5]0,00) ; there exists T' > 0 such that w(t) = 0 for all t > T}

Is not complete.

To see this, consider the sequence {wy, wy,...} C W

et for0<t<k
wk:(t){

0 otherwise

This sequence is Cauchy, since, for [ < k

k
Hw;{;—le2 :/ e 2t dt
l

1
_ _(6—2l . 6—2k>
2
with a similar result for & < I, and hence ||w;, — w;|| < e~ ™kl
The sequence {wy, w1, ...} C Ls[0,00), and in that space it converges to the function

w(t) = e . But w € VW and hence W is not complete.
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Operators
Linearity
The mapping F': V — Z is called linear if
F(onv1 + asvs) = an F(v1) + asF(v3)
for all v1,v9 € V and a1, ay € R.
Boundedness
The mapping F': V — Z is called bounded if there exists K > 0 such that
IF ()] < Kllv|
for all v € V.

e A bounded linear map is often called a linear operator.

o If I is linear, we often omit the brackets around its argument, and write F'v = F(v),
as in matrix multiplication.
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Induced-norms

The induced-norm of a linear operator is

|F'[| = sup
£0
This is also often called the operator norm.

Notes

e ||F|| measures the maximum amplification or gain of I

Examples

o |f M :R" — R is a linear operator, and we put the 2-norm on R and R", then

|M|| =a(M)  the maximum singular value of M

e |f we use the oo-norm on R™ and R”, then

n

|M||so—oe = max > | M;
1<i<m < .
j:
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Interpretation of the induced co-norm

The induced oco-norm of a matrix M is

[ Moo = maﬁZ‘Mij‘

|

1 1M

Interpretations

o |f = fits within a square box of half-width 1, then Mx fits within a square box of
half-width || M||sc— oo

e The worst-case unit-norm z has the form x; = £1.

Example o
—1

M = L2t |M]|=9  Worst-case x = | 1

0-2 1 o
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The induced co-norm of a linear system

Recall the oo-norm of a signal w € L[0, o) is

[wlloo = esssup luw(@)llo

= esssup sup |w;(t)]
£

Consider the state-space linear system GG given by
t(t) = Ax(t) + Bu(t)
y(t) = Cu(t)

with u and y scalar real-valued signals.

Suppose we know the [|u||oo; that is, the worst-case peak of u is given by
[u(t)] < Upeak

We would like to find the worst-case peak value of the output signal 3. This is given by
Upeak || G| o000

How do we compute ||G||oo—00?
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The induced co-norm of a linear system

Recall G can be represented as the convolution

(Gu)(t) = /0 g(t — T)u(t)dr

where g(t) = Ce' B is the impulse response of G.

Theorem

The induced L., norm of GG is the 1-norm of the impulse response.

HGwW%mzumhzié 9(0)) dt
Proof: We have

g(t — T)u(T) dT

/mt—TWLH

_/‘m@—ﬂMme_wmuwma

0

y(t)] =

Hence we have ||G||oc—o0 < ||9]|1-

2001.10.10.01
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Proof continued

We have shown that |G||s—c0 < ||g]||1. We need to show that ||G||co—00 = [|9]|1-
|deally we would like to find u such that
1Ylloo = llgllallullo

We need only consider u with ||u||o = 1. In fact we will show that for any € > 0, we can
find a u such that

[Yllw = llgll1 — €
Choose t such that

t
/O|g<t—7>\dfz ol —

and set u(7) = sgn(g(t — 7)). Then

y(t):/O g(t —1)u dT_/|gt—7'|d7'

Since y is continuous, we have

1yl = [lglls — €
In general, the optimal input on [0, T'] is u(t) = sgn(g(T'—t)). Note, this is not a sinusoid.
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Example: mass-spring system

\
\ 4

We have, with m =1, d =0.2 and k = 0.2,
[0 1

A= —k/m —d/m] B

C=[10] D =

Numerlcally we find ||g||1 = 1.447 and HyHOO = 1.430.
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