Engr210a Lecture 5: Linear analysis

- Norms on vectors, signals, and matrices
- Inner products
- Topology
- Convergence and completeness
- Bounded operators
- Induced norms

Norms

A norm $\|\cdot\|$ on a vector space \mathcal{V} is a function mapping $\mathcal{V} \to [0, \infty)$ which satisfies

- Definiteness: ||v|| = 0 if and only if v = 0
- Homogeneity: $\|\alpha v\| = |\alpha| \|v\|$
- Triangle inequality: $||u + v|| \le ||u|| + ||v||$

for all $u, v \in \mathcal{V}$ and $\alpha \in \mathbb{R}$.

Examples on \mathbb{C}^n

- Euclidean norm: $||v||_2 = v^*v = (|v_1|^2 + \dots + |v_n|^2)^{\frac{1}{2}}$
- *p*-norm: $||v||_p = (|v_1|^p + \dots + |v_n|^p)^{\frac{1}{p}}$
- 1-norm: $||v||_1 = |v_1| + \dots + |v_n|$

•
$$\infty$$
-norm: $||v||_{\infty} = \max\{|v_k| ; k = 1, \dots, n\}$

Norms on matrices

For a matrix $A \in \mathbb{C}^{m \times n}$, we define

• Frobenius norm:
$$||A||_F = (\operatorname{trace}(A^*A))^{\frac{1}{2}}$$

If $A = [a_1 \ a_2 \ \dots \ a_n]$, then
 $||A||_F = (||a_1||_2^2 + ||a_2||_2^2 + \dots + ||a_n||_2^2)^{\frac{1}{2}}$
 $= \left(\sum_{i=1}^m \sum_{j=1}^n |A_{ij}|^2\right)^{\frac{1}{2}}$

• Spectral norm:

$$\|A\| = \max\left\{\lambda^{\frac{1}{2}}; \ \lambda \text{ is an eigenvalue of } A^*A\right\}$$
$$= \max\left\{\lambda^{\frac{1}{2}}; \ \lambda \text{ is an eigenvalue of } AA^*\right\}$$
$$= \max_{x \neq 0} \frac{\|Ax\|_2}{\|x\|_2}$$

Norms on signals

The L_∞ space of signals on $(-\infty,\infty)$ is

$$L_{\infty}(-\infty,\infty) = \left\{ u : \mathbb{R} \to \mathbb{C}^n ; \|u\|_{\infty} = \operatorname{ess\,sup}_{t \in \mathbb{R}} \|u(t)\|_{\infty} \text{ is finite} \right\}$$

Notes

- $\operatorname{ess\,sup}_{t\in\mathbb{R}} \|u(t)\|_{\infty} < 1 \text{ means } \|u(t)\|_{\infty} < 1 \text{ at all } t \text{ except a finite set of points } \{t_i\}.$
- Corresponds to the *peak* of a signal.
- The spatial norm is also the ∞ -norm.

The L_2 space of signals on $(-\infty,\infty)$ is

$$L_2(-\infty,\infty) = \left\{ u : \mathbb{R} \to \mathbb{C}^n ; \|u\|_2 = \left(\int_{-\infty}^{\infty} \|u(t)\|_2^2 dt \right)^{\frac{1}{2}} \text{ is finite} \right\}$$

Notes

- u(t) must decay to zero as $t \to \infty$ for $||u||_2$ to be finite.
- Corresponds to the *total energy* in a signal.

Inner product spaces

An inner product $\langle\cdot,\cdot\rangle$ on a vector space $\mathcal V$ is a function mapping $\mathcal V\times\mathcal V\to\mathbb C$ which satisfies

- $\langle v, v \rangle \ge 0$, with $\langle v, v \rangle = 0$ if and only if v = 0
- $\langle v, \alpha_1 u_1 + \alpha_2 u_2 \rangle = \alpha_1 \langle v, u_1 \rangle + \alpha_2 \langle v, u_2 \rangle$
- $\langle u,v\rangle$ is the complex conjugate of $\langle v,u\rangle$

for all $u_1, u_2, u, v \in \mathcal{V}$ and $\alpha_1, \alpha_2 \in \mathbb{R}$.

Standard facts

- The inner-product captures the idea of *angle* between two vectors. If $\langle u, v \rangle = 0$ we say u, v are *orthogonal*.
- We can define $||v|| = \langle v, v \rangle^{\frac{1}{2}}$. This is a norm; i.e. it satisfies the required properties of a norm.
- The Cauchy-Schwartz Inequality:

 $|\langle u, v \rangle| \le ||u|| ||v||$

Examples of inner product spaces

- Euclidean space: $\langle x, y \rangle = x^*y$. The corresponding norm is the 2-norm.
- Matrices $C^{m \times n}$: $\langle A, B \rangle = \text{Trace}(A^*B)$. The corresponding norm is the Frobenius norm.

The space L_2

• The inner product on $L_2(-\infty,\infty)$ is

$$\langle x, y \rangle = \int_{-\infty}^{\infty} (x(t))^* y(t) dt$$

•
$$L_2[0,\infty)$$
 is a subspace of $L_2(-\infty,\infty)$.

The open ball

Suppose V is a normed space. The open ball $B(x,\varepsilon) \subset V$ is the set

$$B(x,\varepsilon) = \left\{ y \in \mathcal{V} \; ; \; \|x - y\| < \varepsilon \right\}$$

We say the ball has radius ε .

Example: In \mathbb{R}^2 , with the ∞ -norm, the ball of radius one at the origin is the square

$$B(0,1) = \left\{ (x_1, x_2) \in \mathbb{R}^2 \quad |x_1| < 1 \text{ and } |x_2| < 1 \right\} \qquad - \left| \begin{array}{c} \uparrow \\ - \left| \end{array}{c} \right| \right|} \right|} \right|} \right| \right| \right| \right| \right\}$$

Note that the boundary is not included.

Interior points

Suppose $P \subseteq V$. Then the point $x \in P$ is an *interior point* if

there exists $\varepsilon > 0$ such that $B(x,\varepsilon) \subset P$

Examples

• If P is the usual unit disk in \mathbb{R}^2 including boundary

$$\{(x_1, x_2) \in \mathbb{R}^2 \mid x_1^2 + x_2^2 \le 1\}$$

Then the interior points are those points x which satisfy $x_1^2 + x_2^2 < 1$.

• If P is the plane $x_3 = 0$ in \mathbb{R}^3 , then P has no interior points.

Notes

- In finite dimensional space, the set of interior points of a set P is the same no matter which norm is used in the definition of the ball.
- In infinite dimensions, this is not true in general.

Open sets

The subset $P \subseteq V$ is called *open* if every point $x \in P$ is an interior point.

Examples

- The open ball $B(x,\varepsilon)$ is open for all $x \in V$ and all $\varepsilon > 0$.
- The interval $(a,b) \subset \mathbb{R} = \{x \in \mathbb{R} \ ; \ a < x < b\}$ is open.
- The subset of \mathbb{R}^2 defined by

$$\{(x_1, x_2) ; a < x_1 < b; x_2 = 0\}$$

is not open.

Closure points

A point $x \in V$ is called a *closure point* of the subset $P \subseteq V$ if $B(x, \varepsilon) \cap P \neq \emptyset$ for all $\varepsilon > 0$.

That is, x is a closure point of P if every open ball around x intersects with P.

Example of closure points

• The closure points of the half-space in \mathbb{R}^2

 $\{(x_1, x_2) ; x_1 < b\}$

is the half-space

 $\{(x_1, x_2) ; x_1 \le b\}$

Closed sets

The subset $P \subseteq V$ is called *closed* if every closure point x of P is an element of P.

Facts

- The complement of an open set is closed and the complement of a closed set is open.
- The whole space ${\mathcal V}$ is both closed and open.
- If P_1 and P_2 are open, then both $P_1 \cap P_2$ and $P_1 \cup P_2$ are open.
- If P_1 and P_2 are closed, then both $P_1 \cap P_2$ and $P_1 \cup P_2$ are closed.

Caveat:

The intersection of an infinite number of open sets may not be open; for example, $\bigcap\{(1/k, 1/k) \subset \mathbb{R} \ ; \ k = 1, 2, ... \} = \{0\}$ is not open.

Convergence

The sequence of elements $\{v_0, v_1, v_2, \ldots, ; v_i \in \mathcal{V}\}$ in a normed space \mathcal{V} converges if there exists an element $x \in \mathcal{V}$ such that limit

$$\lim_{k \to \infty} \|v_k - x\| = 0$$

Note that

- Convergence in ${\mathcal V}$ is defined in terms of convergence of real numbers.
- Whether a sequence converges or not depends on which norm is used.
- We need to know x to apply this definition.

Cauchy sequences

The sequence $\{v_0, v_1, v_2, \dots, \}$ is *Cauchy* if for any $\varepsilon > 0$,

there exists N such that $||v_i - v_j|| < \varepsilon$ for all i, j > N

Notes

• A Cauchy sequence is one that *appears to converge*.

Facts

- Every convergent sequence is Cauchy.
- In a closed subset P of a normed space, every Cauchy sequence converges.

Completeness

The space \mathcal{V} is called *complete* if every Cauchy sequence converges.

- A complete normed space is called a *Banach space*.
- A complete inner-product space is called a *Hilbert space*.

Example

The inner-product space

$$\mathcal{W} = \left\{ w \in L_2[0,\infty) ; \text{ there exists } T > 0 \text{ such that } w(t) = 0 \text{ for all } t \ge T \right\}$$

is not complete.

To see this, consider the sequence $\{w_0, w_1, \dots\} \subset \mathcal{W}$

$$w_k(t) = \begin{cases} e^{-t} & \text{for } 0 \le t \le k \\ 0 & \text{otherwise} \end{cases}$$

This sequence is Cauchy, since, for l < k

$$||w_k - w_l||^2 = \int_l^k e^{-2t} dt$$
$$= \frac{1}{2} (e^{-2l} - e^{-2k})$$

with a similar result for k < l, and hence $||w_k - w_l|| \le e^{-\min\{k,l\}}$.

The sequence $\{w_0, w_1, \dots\} \subset L_2[0, \infty)$, and in that space it converges to the function $w(t) = e^{-t}$. But $w \notin \mathcal{W}$ and hence \mathcal{W} is not complete.

Operators

Linearity

The mapping $F: \mathcal{V} \to \mathcal{Z}$ is called *linear* if

$$F(\alpha_1 v_1 + \alpha_2 v_2) = \alpha_1 F(v_1) + \alpha_2 F(v_2)$$

for all $v_1, v_2 \in \mathcal{V}$ and $\alpha_1, \alpha_2 \in \mathbb{R}$.

Boundedness

The mapping $F: \mathcal{V} \to \mathcal{Z}$ is called *bounded* if there exists K > 0 such that $\|F(v)\| \le K \|v\|$

for all $v \in \mathcal{V}$.

- A bounded linear map is often called a linear *operator*.
- If F is linear, we often omit the brackets around its argument, and write Fv = F(v), as in matrix multiplication.

5 - 15 Linear analysis

Induced-norms

The *induced-norm* of a linear operator is

$$|F|| = \sup_{v \neq 0} \frac{\|Fv\|}{\|v\|}$$

This is also often called the *operator norm*.

Notes

• ||F|| measures the maximum amplification or gain of F.

Examples

- If $M : \mathbb{R}^n \to \mathbb{R}^m$ is a linear operator, and we put the 2-norm on \mathbb{R}^m and \mathbb{R}^n , then $\|M\| = \overline{\sigma}(M)$ the maximum singular value of M
- If we use the ∞ -norm on \mathbb{R}^m and \mathbb{R}^n , then

$$\|M\|_{\infty \to \infty} = \max_{1 \le i \le m} \sum_{j=1}^{n} |M_{ij}|$$

Interpretation of the induced $\infty\text{-norm}$

The induced ∞ -norm of a matrix M is

Interpretations

- If x fits within a square box of half-width 1, then Mx fits within a square box of half-width $||M||_{\infty \to \infty}$.
- The worst-case unit-norm x has the form $x_i = \pm 1$.

Example

$$M = \begin{bmatrix} -1 & 2 & -6 \\ 0 & -2 & 1 \end{bmatrix} \qquad \|M\| = 9 \qquad \text{Worst-case } x = \begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix}$$

The induced ∞ -norm of a linear system

Recall the ∞ -norm of a signal $w \in L_{\infty}[0, \infty)$ is $\|w\|_{\infty} = \operatorname{ess\,sup}_{t} \|w(t)\|_{\infty}$ $= \operatorname{ess\,sup}_{t} \sup_{i} |w_{i}(t)|$

Consider the state-space linear system ${\cal G}$ given by

$$\dot{x}(t) = Ax(t) + Bu(t)$$
$$y(t) = Cx(t)$$

with u and y scalar real-valued signals.

Suppose we know the $||u||_{\infty}$; that is, the worst-case peak of u is given by

$$|u(t)| \le u_{\rm peak}$$

We would like to find the worst-case peak value of the output signal y. This is given by

$$u_{\mathsf{peak}} \|G\|_{\infty \to \infty}$$

How do we compute $||G||_{\infty \to \infty}$?

The induced ∞ -norm of a linear system

Recall G can be represented as the convolution

$$(Gu)(t) = \int_0^t g(t-\tau)u(\tau)\,d\tau$$

where $g(t) = Ce^{At}B$ is the *impulse response* of G.

Theorem

The induced L_{∞} norm of G is the 1-norm of the impulse response.

$$||G||_{\infty \to \infty} = ||g||_1 = \int_0^\infty |g(t)| \, dt$$

Proof: We have

$$\begin{aligned} |y(t)| &= \left| \int_0^t g(t-\tau)u(\tau) \, d\tau \right| \\ &\leq \int_0^t |g(t-\tau)| \, |u(\tau)| \, d\tau \\ &\leq \int_0^\infty |g(t-\tau)| \, d\tau \, ||u||_\infty = ||g||_1 \, ||u||_\infty \end{aligned}$$

Hence we have $||G||_{\infty \to \infty} \le ||g||_1$.

5 - 19 Linear analysis

Proof continued

We have shown that $||G||_{\infty \to \infty} \le ||g||_1$. We need to show that $||G||_{\infty \to \infty} \ge ||g||_1$. Ideally we would like to find u such that

$$\|y\|_{\infty} = \|g\|_1 \|u\|_{\infty}$$

We need only consider u with $||u||_{\infty} = 1$. In fact we will show that for any $\varepsilon > 0$, we can find a u such that

$$\|y\|_{\infty} \ge \|g\|_1 - \varepsilon$$

Choose t such that

$$\int_0^t |g(t-\tau)| \, d\tau \ge \|g\|_1 - \varepsilon$$

and set $u(\tau) = \mathrm{sgn}(g(t-\tau)).$ Then

$$y(t) = \int_0^t g(t - \tau) u(\tau) \, d\tau = \int_0^t |g(t - \tau)| \, d\tau$$

Since y is continuous, we have

$$\|y\|_{\infty} \ge \|g\|_1 - \varepsilon$$

In general, the optimal input on [0, T] is u(t) = sgn(g(T-t)). Note, this is *not* a sinusoid.

Example: mass-spring system

We have, with m = 1, d = 0.2 and k = 0.2,

$$A = \begin{bmatrix} 0 & 1 \\ -k/m & -d/m \end{bmatrix} \qquad \qquad B = \begin{bmatrix} 0 \\ 1/m \end{bmatrix}$$
$$C = \begin{bmatrix} 1 & 0 \end{bmatrix} \qquad \qquad D = 0$$

Numerically, we find $||g||_1 = 1.447$ and $||y||_{\infty} = 1.430$.

