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Engr210a Lecture 5: Linear analysis

• Norms on vectors, signals, and matrices

• Inner products

• Topology

• Convergence and completeness

• Bounded operators

• Induced norms
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Norms

A norm ‖·‖ on a vector space V is a function mapping V → [0, ∞) which satisfies

• Definiteness: ‖v‖ = 0 if and only if v = 0

• Homogeneity: ‖αv‖ = |α|‖v‖
• Triangle inequality: ‖u + v‖ ≤ ‖u‖ + ‖v‖

for all u, v ∈ V and α ∈ R.

Examples on Cn

• Euclidean norm: ‖v‖2 = v∗v =
(|v1|2 + · · · + |vn|2

)1
2

• p-norm: ‖v‖p =
(|v1|p + · · · + |vn|p

)1
p

• 1-norm: ‖v‖1 = |v1| + · · · + |vn| 1

• ∞-norm: ‖v‖∞ = max
{|vk| ; k = 1, . . . , n

}
1
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Norms on matrices

For a matrix A ∈ C
m×n, we define

• Frobenius norm: ‖A‖F =
(
trace(A∗A)

)1
2

If A =
[
a1 a2 . . . an

]
, then

‖A‖F =
(
‖a1‖2

2 + ‖a2‖2
2 + · · · + ‖an‖2

2

)1
2

=

( m∑
i=1

n∑
j=1

|Aij|2
)1

2

• Spectral norm:

‖A‖ = max
{

λ
1
2 ; λ is an eigenvalue of A∗A

}
= max

{
λ

1
2 ; λ is an eigenvalue of AA∗

}
= max

x �=0

‖Ax‖2

‖x‖2
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Norms on signals

The L∞ space of signals on (−∞,∞) is

L∞(−∞,∞) =
{

u : R → C
n ; ‖u‖∞ = ess sup

t∈R

‖u(t)‖∞ is finite
}

Notes

• ess supt∈R‖u(t)‖∞ < 1 means ‖u(t)‖∞ < 1 at all t except a finite set of points {ti}.
• Corresponds to the peak of a signal.

• The spatial norm is also the ∞-norm.

The L2 space of signals on (−∞,∞) is

L2(−∞,∞) =
{

u : R → C
n ; ‖u‖2 =

(∫ ∞

−∞
‖u(t)‖2

2 dt

)1
2

is finite
}

Notes

• u(t) must decay to zero as t → ∞ for ‖u‖2 to be finite.

• Corresponds to the total energy in a signal.
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Inner product spaces

An inner product 〈·, ·〉 on a vector space V is a function mapping V × V → C which
satisfies

• 〈v, v〉 ≥ 0, with 〈v, v〉 = 0 if and only if v = 0

• 〈v, α1u1 + α2u2〉 = α1〈v, u1〉 + α2〈v, u2〉
• 〈u, v〉 is the complex conjugate of 〈v, u〉

for all u1, u2, u, v ∈ V and α1, α2 ∈ R.

Standard facts

• The inner-product captures the idea of angle between two vectors. If 〈u, v〉 = 0 we
say u, v are orthogonal.

• We can define ‖v‖ = 〈v, v〉1
2. This is a norm; i.e. it satisfies the required properties

of a norm.

• The Cauchy-Schwartz Inequality:

|〈u, v〉| ≤ ‖u‖‖v‖
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Examples of inner product spaces

• Euclidean space: 〈x, y〉 = x∗y. The corresponding norm is the 2-norm.

• Matrices Cm×n: 〈A, B〉 = Trace(A∗B). The corresponding norm is the Frobenius
norm.

The space L2

• The inner product on L2(−∞,∞) is

〈x, y〉 =

∫ ∞

−∞

(
x(t)

)∗
y(t) dt

• L2[0,∞) is a subspace of L2(−∞,∞).
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The open ball

Suppose V is a normed space. The open ball B(x, ε) ⊂ V is the set

B(x, ε) =
{

y ∈ V ; ‖x − y‖ < ε
}

We say the ball has radius ε.

Example: In R2, with the ∞-norm, the ball of radius one at the origin is the square

B(0, 1) =
{

(x1, x2) ∈ R
2 |x1| < 1 and |x2| < 1

}

Note that the boundary is not included.



5 - 8 Linear analysis 2001.10.10.01

Interior points

Suppose P ⊆ V . Then the point x ∈ P is an interior point if

there exists ε > 0 such that B(x, ε) ⊂ P

Examples

• If P is the usual unit disk in R
2 including boundary{

(x1, x2) ∈ R
2 x2

1 + x2
2 ≤ 1

}
Then the interior points are those points x which satisfy x2

1 + x2
2 < 1.

• If P is the plane x3 = 0 in R
3, then P has no interior points.

Notes

• In finite dimensional space, the set of interior points of a set P is the same no matter
which norm is used in the definition of the ball.

• In infinite dimensions, this is not true in general.
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Open sets

The subset P ⊆ V is called open if every point x ∈ P is an interior point.

Examples

• The open ball B(x, ε) is open for all x ∈ V and all ε > 0.

• The interval (a, b) ⊂ R = {x ∈ R ; a < x < b} is open.

• The subset of R2 defined by

{(x1, x2) ; a < x1 < b; x2 = 0}
is not open.

Closure points

A point x ∈ V is called a closure point of the subset P ⊆ V if

B(x, ε) ∩ P �= ∅ for all ε > 0.

That is, x is a closure point of P if every open ball around x intersects with P .
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Example of closure points

• The closure points of the half-space in R
2

{(x1, x2) ; x1 < b}
is the half-space

{(x1, x2) ; x1 ≤ b}
Closed sets

The subset P ⊆ V is called closed if every closure point x of P is an element of P .

Facts

• The complement of an open set is closed and the complement of a closed set is open.

• The whole space V is both closed and open.

• If P1 and P2 are open, then both P1 ∩ P2 and P1 ∪ P2 are open.

• If P1 and P2 are closed, then both P1 ∩ P2 and P1 ∪ P2 are closed.

Caveat:

The intersection of an infinite number of open sets may not be open; for example,⋂{(1/k, 1/k) ⊂ R ; k = 1, 2, . . . } = {0} is not open.
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Convergence

The sequence of elements {v0, v1, v2, . . . , ; vi ∈ V} in a normed space V converges if
there exists an element x ∈ V such that limit

lim
k→∞

‖vk − x‖ = 0

Note that

• Convergence in V is defined in terms of convergence of real numbers.

• Whether a sequence converges or not depends on which norm is used.

• We need to know x to apply this definition.
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Cauchy sequences

The sequence {v0, v1, v2, . . . , } is Cauchy if for any ε > 0,

there exists N such that ‖vi − vj‖ < ε for all i, j > N

Notes

• A Cauchy sequence is one that appears to converge.

Facts

• Every convergent sequence is Cauchy.

• In a closed subset P of a normed space, every Cauchy sequence converges.

Completeness

The space V is called complete if every Cauchy sequence converges.

• A complete normed space is called a Banach space.

• A complete inner-product space is called a Hilbert space.
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Example

The inner-product space

W =
{

w ∈ L2[0,∞) ; there exists T > 0 such that w(t) = 0 for all t ≥ T
}

is not complete.

To see this, consider the sequence {w0, w1, . . . } ⊂ W

wk(t) =

{
e−t for 0 ≤ t ≤ k

0 otherwise

This sequence is Cauchy, since, for l < k

‖wk − wl‖2 =

∫ k

l

e−2t dt

=
1

2
(e−2l − e−2k)

with a similar result for k < l, and hence ‖wk − wl‖ ≤ e−min{k,l}.

The sequence {w0, w1, . . . } ⊂ L2[0,∞), and in that space it converges to the function
w(t) = e−t. But w �∈ W and hence W is not complete.
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Operators

Linearity

The mapping F : V → Z is called linear if

F (α1v1 + α2v2) = α1F (v1) + α2F (v2)

for all v1, v2 ∈ V and α1, α2 ∈ R.

Boundedness

The mapping F : V → Z is called bounded if there exists K > 0 such that

‖F (v)‖ ≤ K‖v‖
for all v ∈ V .

• A bounded linear map is often called a linear operator.

• If F is linear, we often omit the brackets around its argument, and write Fv = F (v),
as in matrix multiplication.
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Induced-norms

The induced-norm of a linear operator is

‖F‖ = sup
v �=0

‖Fv‖
‖v‖

This is also often called the operator norm.

Notes

• ‖F‖ measures the maximum amplification or gain of F .

Examples

• If M : Rn → Rm is a linear operator, and we put the 2-norm on Rm and Rn, then

‖M‖ = σ(M) the maximum singular value of M

• If we use the ∞-norm on R
m and R

n, then

‖M‖∞→∞ = max
1≤i≤m

n∑
j=1

|Mij|
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Interpretation of the induced ∞-norm

The induced ∞-norm of a matrix M is

‖M‖∞→∞ = max
1≤i≤m

n∑
j=1

|Mij|

x

1
−→

Mx
‖M‖

Interpretations

• If x fits within a square box of half-width 1, then Mx fits within a square box of
half-width ‖M‖∞→∞.

• The worst-case unit-norm x has the form xi = ±1.

Example

M =

[−1 2 −6
0 −2 1

]
‖M‖ = 9 Worst-case x =


−1

1
−1
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The induced ∞-norm of a linear system

Recall the ∞-norm of a signal w ∈ L∞[0,∞) is

‖w‖∞ = ess sup
t

‖w(t)‖∞
= ess sup

t
sup

i
|wi(t)|

Consider the state-space linear system G given by

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)

with u and y scalar real-valued signals.

Suppose we know the ‖u‖∞; that is, the worst-case peak of u is given by

|u(t)| ≤ upeak

We would like to find the worst-case peak value of the output signal y. This is given by

upeak‖G‖∞→∞

How do we compute ‖G‖∞→∞?
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The induced ∞-norm of a linear system

Recall G can be represented as the convolution

(Gu)(t) =

∫ t

0

g(t − τ )u(τ ) dτ

where g(t) = CeAtB is the impulse response of G.

Theorem

The induced L∞ norm of G is the 1-norm of the impulse response.

‖G‖∞→∞ = ‖g‖1 =

∫ ∞

0

|g(t)| dt

Proof: We have

|y(t)| =

∣∣∣∣
∫ t

0

g(t − τ )u(τ ) dτ

∣∣∣∣
≤

∫ t

0

|g(t − τ )||u(τ )| dτ

≤
∫ ∞

0

|g(t − τ )| dτ ‖u‖∞ = ‖g‖1 ‖u‖∞

Hence we have ‖G‖∞→∞ ≤ ‖g‖1.
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Proof continued

We have shown that ‖G‖∞→∞ ≤ ‖g‖1. We need to show that ‖G‖∞→∞ ≥ ‖g‖1.

Ideally we would like to find u such that

‖y‖∞ = ‖g‖1‖u‖∞
We need only consider u with ‖u‖∞ = 1. In fact we will show that for any ε > 0, we can
find a u such that

‖y‖∞ ≥ ‖g‖1 − ε

Choose t such that ∫ t

0

|g(t − τ )| dτ ≥ ‖g‖1 − ε

and set u(τ ) = sgn(g(t − τ )). Then

y(t) =

∫ t

0

g(t − τ )u(τ ) dτ =

∫ t

0

|g(t − τ )| dτ

Since y is continuous, we have

‖y‖∞ ≥ ‖g‖1 − ε

In general, the optimal input on [0, T ] is u(t) = sgn(g(T−t)). Note, this is not a sinusoid.
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Example: mass-spring system

m
u

y

We have, with m = 1, d = 0.2 and k = 0.2,

A =

[
0 1

−k/m −d/m

]
B =

[
0

1/m

]
C =

[
1 0

]
D = 0

Numerically, we find ‖g‖1 = 1.447 and ‖y‖∞ = 1.430.
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