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Engr210a Lecture 6: Linear analysis and systems

• Banach algebras

• Invertibility of operators

• The small-gain theorem

• The spectrum of an operator

• Adjoint operators

• Signal spaces L2 and H2

• The Fourier and Laplace transforms

• Time-invariance and causality

• Operator spaces L∞ and H∞
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Operators

For Banach spaces V and Z , the map F : V → Z is a bounded linear operator if

• Linearity: F (α1v1 + α2v2) = α1F (v1) + α2F (v2) for all v1, v2 ∈ V and α1, α2 ∈ R.

• Boundedness: There exists K > 0 such that ‖F (v)‖ ≤ K‖v‖ for all v ∈ V .

Sets of linear operators

• L(V ,Z) is the set of all bounded linear operators mapping V to Z .

• L(V) is the set of all bounded linear operators mapping V to itself.

The set L(V ,Z) is a Banach space.

• It is a vector space; we have addition and scalar multiplication. e.g.

(F1 + F2)(v) = F1(v) + F2(v)

• It has a norm – the induced norm.

• It is complete. We will not prove this here.
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Banach algebras

As well as being a normed vector space, the set L(V) has additional structure, since one
may compose maps. We write (F1F2)(v) = F1(F2(v)), giving

F1, F2 ∈ L(V) =⇒ F1F2 ∈ L(V)

The space L(V) is called a Banach algebra

Axiomatic definition of a Banach algebra

• There exists an element I ∈ B, such that F · I = I · F = F , for all F ∈ B.

• F (GH) = (FG)H, for all F, G, H in B.

• F (G + H) = FG + FH, for all F, G, H in B.

• For all F, G in B, and each scalar α, we have F (αG) = (αF )G = αFG.

• The submultiplicative inequality: ‖FG‖ ≤ ‖F‖ ‖G‖.
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The submultiplicative inequality

The submultiplicative inequality is

‖FG‖ ≤ ‖F‖ ‖G‖

• This is very useful in control; leads to a useful robustness test.

• It follows from the definition of the induced-norm:

‖FGx‖ ≤ ‖F‖ ‖Gx‖ ≤ ‖F‖ ‖G‖ ‖x‖

Examples

• The set of linear operators on any Banach space V forms a Banach algebra.

• The set of n × n matrices forms a Banach algebra.
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Invertibility of operators

An operator F ∈ L(V) is called invertible if there exists G ∈ L(V) such that

FG = I and GF = I

We write G = F−1 as usual.

Note that the inverse G must be bounded, and that we need both equations to hold. For
example, �2 is the space of square-summable sequences

�2 =
{

(x0, x1, . . . ) ; xi ∈ R
n,

∞∑
i=0

x∗
i xi is finite

}

Consider the forward shift operator Z ∈ L(�2) where y = Zx if

yk =

{
xk−1 if k ≥ 1

0 if k = 0

This maps (10, 3, 2, . . . ) to (0, 10, 3, 2, . . . ).

The backward shift operator B ∈ L(�2) defined by

y = Bx if yk = xk+1 for all k ≥ 0

satisfies BZ = I , but not ZB = I . The operator Z is called not invertible or singular,
even though given y one can find x.



6 - 6 Linear analysis and systems 2001.10.17.01

The small-gain theorem

Suppose Q is an element of a Banach algebra B. Then

‖Q‖ < 1 =⇒ I − Q is invertible, and (I − Q)−1 =
∞∑
i=0

Qk

Examples

• If Q =

[
0 0.5

0.2 0.5

]
, then ‖Q‖ = σ(Q) = 0.72. Then we know that I−Q is invertible.

• Clearly the reverse implication does not hold. For example, Q = 2I .

Notes

• Here we are only assuming that Q is an element of a Banach algebra. We do not
need to use any properties of Q as a linear map.

• The submultiplicative property implies ‖PQ‖ ≤ ‖P‖ ‖Q‖. Hence if ‖P‖ ≤ 1

I − PQ is invertible for all operators Q with ‖Q‖ < 1.

This is very useful when analyzing stability of feedback loops.
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Left and right inverses

For F ∈ B, The operator L ∈ B is called the left-inverse of F if LF = I .

Similarly, R ∈ B is called the right-inverse of F if FR = I .

If F has both a left-inverse and a right-inverse, then they are equal, since

L = L(BR) = (LB)R = R

Series convergence

The infinite sum is defined by
∞∑
i=0

Qi = lim
n→∞

Tn

where Tn is the partial sum

Tn =

n∑
i=0

Qi
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Proof of the small-gain theorem

First, we show
∑∞

i=0 Qi is in the Banach algebra B. We need to show that {T0, T1, . . . }
is a Cauchy sequence. For m > n,

‖Tm − Tn‖ =
∥∥∥ m∑

i=n+1

Qi
∥∥∥ ≤

m∑
i=n+1

‖Qi‖ ≤
m∑

i=n+1

‖Q‖i

Recall the geometric series sum
m∑

i=n+1

ai =
an+1(1 − am−n)

1 − a
. Then

‖Tm − Tn‖ ≤ ‖Q‖n+1

1 − ‖Q‖ which implies {T0, T1, . . . } is Cauchy.

Now we show that
∞∑
i=0

Qi is the right-inverse of I − Q.

(I − Q)
∞∑

k=0

Qk =
∞∑

k=0

Qk − Q
∞∑

k=0

Qk

= I +

∞∑
k=1

Qk − Q

∞∑
k=0

Qk = I

Similarly,
∞∑
i=0

Qi is the left-inverse of I − Q also, and hence it is the inverse of I − Q.
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The spectrum

Suppose F ∈ L(V). The spectrum of F is

spec(F ) =
{
λ ∈ C ; (λI − F ) is not invertible}

The spectral radius of F is

ρ(F ) = max
{|λ| ; λ ∈ spec(F )

}
.

We say λ is an eigenvalue of F if there exists x ∈ V such that

Fx = λx

Clearly, if λ is an eigenvalue of F , then λ ∈ spec(F ). But the converse is not true in
general. In general {

λ ∈ C ; λ is an eigenvalue of F
} ⊆ spec(F )

These sets are equal for finite-dimensional matrices.
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The spectral radius and the norm

The spectral radius satisfies
ρ(F ) ≤ ‖F‖

for all operators F ∈ L(V).

Proof

For matrices, one can see this by considering an eigenvector. But in general F may not
have eigenvectors.

Suppose |λ| > ‖F‖. Then, set Q = λ−1F , and then ‖Q‖ < 1, which implies that I −Q
is invertible by the small-gain theorem.

Also, if I − Q is invertible, so is λ(I − Q), which is

λ(I − Q) = λ(I − λ−1F ) = λI − F

Hence λ 
∈ spec(F ).



6 - 11 Linear analysis and systems 2001.10.17.01

The spectrum of a product

Consider operators P ∈ L(U ,V) and Q ∈ L(V ,U). Then

(I − PQ) is invertible ⇐⇒ (I − QP ) is invertible

Proof: If I − PQ is invertible, we can construct the inverse of I − QP according to

(I − QP )−1 = I + Q(I − PQ)−1P

This is called the Sherman-Morrison-Woodbury formula, or the Matrix-inversion lemma.
It can be shown directly by multiplying both sides by I − QP .

The spectrum of a product

An immediate consequence is that, for all λ ∈ C, λ 
= 0,

λ ∈ spec(PQ) ⇐⇒ λ ∈ spec(QP )

Proof:

λI − PQ is invertible ⇐⇒ I − λ−1PQ is invertible

⇐⇒ I − λ−1QP is invertible

⇐⇒ λI − QP is invertible
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The spectrum of a product

Example

P =

[
1 0 0
0 2 0

]
Q =


1 0

0 1
1 1


 =⇒ PQ =

[
1 0
0 2

]
QP =


1 0 0

0 2 0
1 2 0




The adjoint operator

Suppose V and Z are Hilbert spaces, and F ∈ L(V , Z). The operator F ∗ ∈ L(Z ,V) is
called the adjoint of F if

〈z, Fv〉 = 〈F ∗z, v〉
for all v ∈ V and z ∈ Z .

Properties

• ‖F ∗‖ = ‖F‖ = ‖F ∗F‖1
2

• ‖F‖2 = ρ(F ∗F ).

Example

The adjoint of a matrix is the complex conjugate transpose.
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Self-adjoint operators

The operator F is called self-adjoint or hermitian if F = F ∗.

• If F is self-adjoint, then ρ(F ) = ‖F‖.
• The quadratic form 〈Fv, v〉 takes only real values.

• If λ ∈ spec(F ), then λ ∈ R.

Positive operators

A self-adjoint operator F is called positive semidefinite, written F ≥ 0, if

〈Fv, v〉 ≥ 0 for all v

A self-adjoint operator F is called positive definite, written F > 0, if

there exists ε > 0 such that 〈Fv, v〉 ≥ ε‖v‖2 for all v

For matrices, this coincides with the usual definition of positive definiteness. If F ∈ Rn×n

F > 0 =⇒ 〈Fv, v〉 = v∗Fv ≥ λmin(F )

2
v∗v
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Isometric operators

The operator U is called isometric if U ∗U = I .

Properties

• Angles are preserved: 〈Uv1, Uv2〉 = 〈U ∗Uv1, v2〉 = 〈v1, v2〉
• Norms are preserved: ‖Uv‖ = ‖v‖ for all v.

• Distances are preserved: ‖Uv1 − Uv2‖ = ‖v1 − v2‖.

Unitary operators

The operator U is called unitary if

U ∗U = I and UU ∗ = I

A unitary operator U : U → V is called an isomorphism.

Example

F =


1 0

0 1
0 0


 is isometric, but not unitary
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The L2 spaces

The Hilbert space L2(−∞,∞) is the set of functions u : R → C
n with inner product

〈u, v〉 =

∫ ∞

−∞
u(t)∗v(t) dt

The Hilbert space L̂2(jR) is the set of functions û : jR → Cn with inner product

〈û, v̂〉 =
1

2π

∫ ∞

−∞
û(jω)∗v̂(jω) dt

The Fourier Transform

The Fourier transform is a map Φ : L2(−∞,∞) → L̂2(jR) defined by

Φ : u �→ û û(jω) =

∫ ∞

−∞
u(t)e−jωt dt

• Φ is a bounded linear operator.

• Φ is invertible. The inverse is given by u(t) =
1

2π

∫ ∞

−∞
û(jω)ejωt dω.

• Φ is unitary. It is an isomorphism between L2(−∞,∞) and L̂2(jR).
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Frequency domain spaces

The open right-half plane and closed right half-plane are

C
+ =

{
z ∈ C ; Re(z) > 0

}
and C̄

+ =
{

z ∈ C ; Re(z) ≥ 0
}

The space H2

The space H2 is the set of functions û : C̄+ → Cn for which

• û is analytic in the open right-half plane C+.

• For almost every real number ω,

û(jω) = lim
σ→0+

û(σ + jω)

• The maximum integral over a vertical line Re(z) = σ in C̄+

sup
σ≥0

∫ ∞

−∞
‖û(σ + jω)‖2

2 dω is finite

Rational functions

A rational function û is in H2 if it is strictly proper and has no poles in the closed right-half
plane.
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The Laplace transform

The Laplace transform Λ : u �→ û is defined by

û(s) =

∫ ∞

0

u(t)e−st dt

Notes

• Λ : L2[0,∞) → H2

• Λ is a bounded linear operator.

• Λ is invertible. It is an isometric isomorphism between L2[0,∞) and H2.

The inner product in H2

Given a function û ∈ H2, this defines a function on the imaginary axis which is an element
of L̂2(jR). We define the inner product of two functions in H2 to be their inner product
as elements of L̂2(jR). That is

〈û, v̂〉 =
1

2π

∫ ∞

−∞
û∗(jω)v̂(jω) dω

Note that H2 is a subspace of L2(jR).
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Summary of signal spaces

The signal spaces are

L2(−∞,∞) ⊃ L2[0,∞)

Fourier Φ

�
�Φ−1 Laplace Λ

�
�Λ−1

L̂2(jR) ⊃ H2
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The space L̂∞(jR)

Consider the set of matrix-valued functions

L̂∞ =
{

G : jR → C
p×m ; ‖G‖∞ = ess sup

ω∈R

σ(Ĝ(jω)) is finite
}

We will use this as a space of transfer functions.

Multiplication operators

The function G ∈ L∞(jR) defines a multiplication operator MĜ : L2(jR) → L2(jR)

ŷ = MĜû ⇐⇒ ŷ(jω) = Ĝ(jω)û(jω)

Notes

• Ĝ is our usual notion of transfer function

• Using the Fourier transform, Ĝ defines a map G : L2(−∞,∞) → L2(−∞,∞) by

G = Φ−1MĜΦ

• If Ĝ is rational, then Ĝ ∈ L̂∞(jR) if and only if it is proper and has no poles on the
imaginary axis.
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The shift operator

The shift operator Sτ : L2(−∞,∞) → L2(−∞,∞) is defined by

y = Sτu ⇐⇒ y(t) = u(t − τ )

This is also called the τ -delay.

Time-invariance

An operator G : L2(−∞,∞) → L2(−∞,∞) is called time-invariant if

GSτ = SτG for all τ ≥ 0

G Sτ GSτ

Theorem

An operator G : L2(−∞,∞) → L2(−∞,∞) is time-invariant if and only there exists a
function Ĝ ∈ L̂∞(jR) such that the multiplication operator satisfies

G = Φ−1MĜΦ
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The truncation operator

The truncation operator Pτ : L2(−∞,∞) → L2(−∞,∞) is defined by

y = Pτu ⇐⇒ y(t) =

{
u(t) for t ≤ τ

0 otherwise

−20 −10 0 10 20
0

0.05

0.1

−20 −10 0 10 20
0

0.05

0.1

Causality

The operator G : L2(−∞,∞) → L2(−∞,∞) is called causal if

PτGPτ = PτG for all τ ∈ R

Interpretation

y1 = PτGu is the output signal on (−∞, τ ) corresponding to input u.

y2 = PτGPτu is the output signal on (−∞, τ ) corresponding to input Pτu.

If y1 = y2, then the output before time τ is unaffected by inputs after time τ .
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Time-invariance and causality

If G is time-invariant, then it is causal if and only if

P0GP0 = P0G

That is, we need only check the causality condition PτGPτ = PτG at τ = 0.

Corollary

A time-invariant operator G is causal if and only if

u ∈ L2[0,∞) =⇒ Gu ∈ L2[0,∞)

Notes

• This follows from P0G(I − P0) = 0.
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The space H∞

The set of matrix-valued functions G : C̄+ → C
p×m satisfying the following properties:

• Ĝ(s) is analytic in C+;

• For almost every real number ω

lim
σ→0+

Ĝ(σ + jω) = Ĝ(jω)

• sup
s∈C̄+

σ(Ĝ(s)) is finite.

Notes

• The norm on H∞ is given by ‖G‖∞ = ess supω∈R σ(Ĝ(jω))

• If Ĝ is rational, then Ĝ ∈ H∞ if and only if it is proper and has no poles in the closed
right-half of the complex plane.
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Theorem

• Every Ĝ ∈ H∞ defines a causal, time-invariant operator G : L2[0, ∞) → L2[0, ∞).

z = Gu is defined by the multiplication operator

ẑ(jω) = Ĝ(jω)û(jω)

• If G : L2[0,∞) → L2[0, ∞) is bounded, linear, and time-invariant, then there exists
a function Ĝ ∈ H∞ such that

z = Gu ⇐⇒ ẑ(jω) = Ĝ(jω)û(jω)

Notes

• There is a one-to-one correspondence between functions in H∞ and linear time-
invariant (LTI) systems.

• We denote the subset of rational functions in H∞ by RH∞.

• Every function Ĝ ∈ RH∞ can be expressed as

Ĝ(s) = C(sI − A)−1B + D

for some matrices A, B,C,D.


