Engr210a Lecture 6: Linear analysis and systems

- Banach algebras
- Invertibility of operators
- The small-gain theorem
- The spectrum of an operator
- Adjoint operators
- $\bullet~$ Signal spaces L_2 and H_2
- The Fourier and Laplace transforms
- Time-invariance and causality
- $\bullet~$ Operator spaces L_{∞} and H_{∞}

Operators

For Banach spaces V and Z, the map $F: V \to Z$ is a bounded linear operator if

- \bullet *Linearity:* $F(\alpha_1v_1+\alpha_2v_2)=\alpha_1F(v_1)+\alpha_2F(v_2)$ *for all* $v_1,v_2\in\mathcal{V}$ *and* $\alpha_1,\alpha_2\in\mathbb{R}.$
- $\bullet \;$ *Boundedness:* There exists $K > 0$ such that $\|F(v)\| \leq K \|v\|$ for all $v \in \mathcal{V}.$

Sets of linear operators

- $\bullet \ \ \mathcal{L}(\mathcal{V},\mathcal{Z})$ is the set of all bounded linear operators mapping $\mathcal V$ to $\mathcal Z.$
- $\bullet\;$ $\mathcal{L}(\mathcal{V})$ is the set of all bounded linear operators mapping $\mathcal V$ to itself.

The set $\mathcal{L}(\mathcal{V}, \mathcal{Z})$ is a *Banach space.*

• It is ^a vector space; we have addition and scalar multiplication. e.g.

$$
(F_1 + F_2)(v) = F_1(v) + F_2(v)
$$

- It has ^a norm the induced norm.
- It is *complete*. We will not prove this here.

Banach algebras

As well as being a normed vector space, the set $\mathcal{L}(\mathcal{V})$ has additional structure, since one may compose maps. We write $(F_1F_2)(v) = F_1(F_2(v))$, giving

$$
F_1, F_2 \in \mathcal{L}(\mathcal{V}) \qquad \Longrightarrow \qquad F_1 F_2 \in \mathcal{L}(\mathcal{V})
$$

The space $\mathcal{L}(\mathcal{V})$ is called a *Banach algebra*

Axiomatic definition of ^a Banach algebra

- $\bullet\;$ There exists an element $I\in\mathcal{B}$, such that $F\cdot I=I\cdot F=F$, for all $F\in\mathcal{B}.$
- $\bullet \ \ F(GH)=(FG)H,$ for all $F, \ G, \ H$ in ${\mathcal B}.$
- $\bullet \ \ F(G+H)=FG+FH,$ for all $F,\ G,\ H$ in ${\mathcal B}.$
- $\bullet~$ For all $F,~G$ in ${\mathcal{B} },$ and each scalar $\alpha,$ we have $F(\alpha G)=(\alpha F)G=\alpha FG.$
- •The submultiplicative inequality: $||FG|| \leq ||F|| ||G||$.

The submultiplicative inequality

The *submultiplicative inequality* is

 $||FG|| \leq ||F|| ||G||$

- This is very useful in control; leads to ^a useful robustness test.
- It follows from the definition of the induced-norm:

 $||FGx|| \leq ||F|| \, ||Gx|| \leq ||F|| \, ||G|| \, ||x||$

Examples

- $\bullet~$ The set of linear operators on any Banach space ${\mathcal V}$ forms a Banach algebra.
- $\bullet\,$ The set of $n\times n$ matrices forms a Banach algebra.

Invertibility of operators

An operator $F \in \mathcal{L}(\mathcal{V})$ is called *invertible* if there exists $G \in \mathcal{L}(\mathcal{V})$ such that

 $FG = I$ and $GF = I$

We write $G = F^{-1}$ as usual.

Note that the inverse G must be *bounded*, and that we need both equations to hold. For example, ℓ_2 is the space of square-summable sequences

$$
\ell_2 = \Big\{ (x_0,x_1,\dots) \; ; \; x_i \in \mathbb{R}^n, \; \sum_{i=0}^\infty x_i^* x_i \; \text{is finite} \Big\}
$$

Consider the *forward shift operator* $Z\in\mathcal{L}(\ell_2)$ *where* $y=Zx$ *if*

$$
y_k = \begin{cases} x_{k-1} & \text{if } k \ge 1\\ 0 & \text{if } k = 0 \end{cases}
$$

This maps $(10, 3, 2, ...)$ to $(0, 10, 3, 2, ...)$.

The *backward shift operator* $B \in \mathcal{L}(\ell_2)$ defined by

$$
y = Bx \qquad \text{if } y_k = x_{k+1} \text{ for all } k \ge 0
$$

satisfies $BZ = I$, but not $ZB = I$. The operator Z is called *not invertible* or *singular*, even though given y one can find x .

The small-gain theorem

Suppose Q is an element of a Banach algebra B . Then

$$
\|Q\| < 1 \qquad \Longrightarrow \qquad I-Q \,\, \text{is invertible, and} \,\, (I-Q)^{-1} = \sum_{i=0}^\infty Q^k
$$

Examples

• If
$$
Q = \begin{bmatrix} 0 & 0.5 \\ 0.2 & 0.5 \end{bmatrix}
$$
, then $||Q|| = \overline{\sigma}(Q) = 0.72$. Then we know that $I - Q$ is invertible.

 $\bullet~$ Clearly the reverse implication does not hold. For example, $Q=2I.$

Notes

- $\bullet\,$ Here we are only assuming that Q is an element of a Banach algebra. We do not need to use any properties of Q as a linear map.
- $\bullet~$ The submultiplicative property implies $\Vert PQ \Vert \leq \Vert P \Vert \ \Vert Q \Vert.$ Hence if $\Vert P \Vert \leq 1$

 $I - PQ$ is invertible for all operators Q with $||Q|| < 1$.

This is very useful when analyzing stability of feedback loops.

Left and right inverses

For $F \in \mathcal{B}$, The operator $L \in \mathcal{B}$ is called the *left-inverse* of F if $LF = I$.

Similarly, $R \in \mathcal{B}$ is called the *right-inverse* of F if $FR = I$.

If F has both a left-inverse and a right-inverse, then they are equal, since

$$
L = L(BR) = (LB)R = R
$$

Series convergence

The infinite sum is defined by

$$
\sum_{i=0}^{\infty} Q^i = \lim_{n \to \infty} T_n
$$

where T_n is the *partial sum*

$$
T_n=\sum_{i=0}^n Q^i
$$

 $i=0$

Proof of the small-gain theorem

First, we show $\sum_{i=0}^{\infty} Q^i$ is in the Banach algebra \mathcal{B} . We need to show that $\{T_0, T_1, \dots\}$ is a Cauchy sequence. For $m>n$,

$$
||T_m - T_n|| = \Big\|\sum_{i=n+1}^m Q^i\Big\| \le \sum_{i=n+1}^m ||Q^i|| \le \sum_{i=n+1}^m ||Q||^i
$$

Recall the geometric series sum $\sum_{i=n+1}^m a^i = \frac{a^{n+1}(1 - a^{m-n})}{1 - a}$. Then

$$
||T_m - T_n|| \le \frac{||Q||^{n+1}}{1 - ||Q||}
$$
 which implies $\{T_0, T_1, ...\}$ is Cauchy.
Now we show that $\sum_{i=0}^\infty Q^i$ is the right-inverse of $I - Q$.

$$
(I - Q) \sum_{k=0}^\infty Q^k = \sum_{k=0}^\infty Q^k - Q \sum_{k=0}^\infty Q^k
$$

$$
= I + \sum_{k=1}^\infty Q^k - Q \sum_{k=0}^\infty Q^k = I
$$

Similarly, $\sum_{i=0}^\infty Q^i$ is the left-inverse of $I - Q$ also, and hence it is the inverse of $I - Q$.

The spectrum

Suppose $F \in \mathcal{L}(\mathcal{V})$. The *spectrum* of F is $\operatorname{spec}(F) = \{ \lambda \in \mathbb{C} \; ; \; (\lambda I - F) \text{ is not invertible} \}$

The *spectral radius* of F is

$$
\rho(F) = \max\{|\lambda| \; ; \; \lambda \in \text{spec}(F)\}.
$$

We say λ is an *eigenvalue* of F if there exists $x \in \mathcal{V}$ such that

$$
Fx=\lambda x
$$

Clearly, if λ is an eigenvalue of F, then $\lambda \in \text{spec}(F)$. But the converse is not true in *general*. In general

$$
\big\{\lambda\in\mathbb{C}\;;\;\lambda\;\text{is an eigenvalue of}\;F\big\}\subseteq \mathrm{spec}(F).
$$

These sets are equal for finite-dimensional matrices.

The spectral radius and the norm

The spectral radius satisfies

 $\rho(F) \leq ||F||$

for all operators $F \in \mathcal{L}(\mathcal{V})$.

Proof

For matrices, one can see this by considering an eigenvector. But in general F may not have eigenvectors.

Suppose $|\lambda| > ||F||$. Then, set $Q = \lambda^{-1}F$, and then $||Q|| < 1$, which implies that $I - Q$ is invertible by the small-gain theorem.

Also, if $I - Q$ is invertible, so is $\lambda (I - Q)$, which is

$$
\lambda(I - Q) = \lambda(I - \lambda^{-1}F) = \lambda I - F
$$

Hence $\lambda \not\in \mathrm{spec}(F)$.

The spectrum of ^a product

Consider operators $P \in \mathcal{L}(\mathcal{U}, \mathcal{V})$ and $Q \in \mathcal{L}(\mathcal{V}, \mathcal{U})$. Then

 $(I - PQ)$ is invertible \iff $(I - QP)$ is invertible

Proof: If $I - PQ$ is invertible, we can construct the inverse of $I - QP$ according to

$$
(I - QP)^{-1} = I + Q(I - PQ)^{-1}P
$$

This is called the *Sherman-Morrison-Woodbury* formula, or the *Matrix-inversion lemma*. It can be shown directly by multiplying both sides by $I - QP$.

The spectrum of ^a product

An immediate consequence is that, for all $\lambda\in\mathbb{C}$, $\lambda\neq0$,

$$
\lambda \in \text{spec}(PQ) \qquad \Longleftrightarrow \qquad \lambda \in \text{spec}(QP)
$$

Proof:

$$
\lambda I - PQ \text{ is invertible } \iff I - \lambda^{-1} PQ \text{ is invertible} \iff I - \lambda^{-1} QP \text{ is invertible} \iff I - \lambda^{-1} QP \text{ is invertible} \iff \lambda I - QP \text{ is invertible}
$$

The spectrum of ^a product

Example

$$
P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \end{bmatrix} \qquad Q = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} \qquad \Longrightarrow \qquad PQ = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \qquad QP = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 1 & 2 & 0 \end{bmatrix}
$$

The adjoint operator

Suppose V and Z are Hilbert spaces, and $F \in \mathcal{L}(\mathcal{V}, \mathcal{Z})$. The operator $F^* \in \mathcal{L}(\mathcal{Z}, \mathcal{V})$ is called the *adjoint* of F if

$$
\langle z, Fv \rangle = \langle F^*z, v \rangle
$$

for all $v \in \mathcal{V}$ and $z \in \mathcal{Z}$.

Properties

- $\bullet~~\|F^*\|=\|F\|=\|F^*F\|^{\frac{1}{2}}$
- $\bullet \ \ \|F\|^2 = \rho(F^*F).$

Example

The adjoint of ^a matrix is the complex conjugate transpose.

Self-adjoint operators

The operator F is called *self-adjoint* or *hermitian* if $F = F^*$.

- $\bullet\ \text{ If }F\text{ is self-adjoint, then }\rho(F)=\Vert F\Vert.$
- \bullet The *quadratic form* $\langle Fv,v\rangle$ *t*akes only real values.
- $\bullet\ \ \mathsf{If}\ \lambda\in\mathrm{spec}(F)$, then $\lambda\in\mathbb{R}.$

Positive operators

A self-adjoint operator F is called *positive semidefinite*, written $F \geq 0$, if $\langle Fv, v \rangle > 0$ for all v

A self-adjoint operator F is called *positive definite*, written $F > 0$, if

there exists $\varepsilon > 0$ such that $\langle Fv, v \rangle \ge \varepsilon ||v||^2$ for all v

For matrices, this coincides with the usual definition of positive definiteness. If $F \in \mathbb{R}^{n \times n}$

$$
F > 0 \qquad \Longrightarrow \qquad \langle Fv, v \rangle = v^* Fv \ge \frac{\lambda_{\min}(F)}{2} v^* v
$$

Isometric operators

The operator U is called *isometric* if $U^*U = I$.

Properties

- $\bullet~$ Angles are preserved: $\langle Uv_1,Uv_2 \rangle = \langle U^*Uv_1,v_2 \rangle = \langle v_1,v_2 \rangle$
- $\bullet~$ Norms are preserved: $\|Uv\|=\|v\|$ for all $v.$
- $\bullet \;\;$ Distances are preserved: $\| U v_1 U v_2 \| = \| v_1 v_2 \| .$

Unitary operators

The operator U is called *unitary* if

 $U^*U = I$ and $UU^* = I$

A unitary operator $U: U \rightarrow V$ is called an *isomorphism*.

Example

$$
F = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}
$$
 is isometric, but not unitary

The L_2 spaces

The Hilbert space $L_2(-\infty,\infty)$ is the set of functions $u:\mathbb{R}\to\mathbb{C}^n$ with inner product

$$
\langle u, v \rangle = \int_{-\infty}^{\infty} u(t)^* v(t) dt
$$

The Hilbert space \hat{L} $_2(j\mathbb{R})$ is the set of functions $\hat{u}: j\mathbb{R}\rightarrow \mathbb{C}^n$ with inner product

$$
\langle \hat{u}, \hat{v} \rangle = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{u}(j\omega)^* \hat{v}(j\omega) dt
$$

The Fourier Transform

The Fourier transform is a map $\Phi:L_2(-\infty,\infty)\rightarrow \hat L$ $_2(j\mathbb{R})$ defined by

$$
\Phi: u \mapsto \hat{u} \qquad \qquad \hat{u}(j\omega) = \int_{-\infty}^{\infty} u(t)e^{-j\omega t} dt
$$

- $\bullet~~ \Phi$ is a bounded linear operator.
- • $\bullet~~ \Phi$ is invertible. The inverse is given by $u(t)=\dfrac{1}{2\pi}\int_{-\infty}^{\infty}\hat{u}(j\omega)e^{j\omega t}\,d\omega.$

 $\bullet~~ \Phi$ is unitary. It is an isomorphism between $L_2(-\infty,\infty)$ and \hat{L} $_2(j\mathbb{R}).$

Frequency domain spaces

The *open right-half ^plane* and *closed right half-plane* are

$$
\mathbb{C}^+ = \left\{ z \in \mathbb{C} \; ; \text{Re}(z) > 0 \right\} \qquad \text{and} \qquad \bar{\mathbb{C}}^+ = \left\{ z \in \mathbb{C} \; ; \text{Re}(z) \ge 0 \right\}
$$

The space H_2

The space H_2 is the set of functions \hat{u} : $\bar{\mathbb{C}}$ $\mathbb{C}^+ \rightarrow \mathbb{C}^n$ for which

- $\bullet~~\hat{u}$ is analytic in the open right-half plane $\mathbb{C}^{+}.$
- $\bullet~$ For almost every real number $\omega,$

$$
\hat{u}(j\omega) = \lim_{\sigma \to 0^+} \hat{u}(\sigma + j\omega)
$$

 $\bullet~$ The maximum integral over a vertical line $\mathrm{Re}(z)=\sigma$ in \bar{C} $\gamma+$

$$
\sup_{\sigma \ge 0} \int_{-\infty}^{\infty} \lVert \hat{u}(\sigma + j\omega) \rVert_2^2 d\omega \qquad \text{is finite}
$$

Rational functions

A rational function \hat{u} is in H_2 if it is strictly proper and has no poles in the closed right-half plane.

The Laplace transform

The Laplace transform $\Lambda: u \mapsto \hat{u}$ is defined by

$$
\hat{u}(s) = \int_0^\infty u(t)e^{-st} dt
$$

Notes

- $\bullet~~ \Lambda: L_2[0,\infty) \rightarrow H_2$
- $\bullet~~ \Lambda$ is a bounded linear operator.
- $\bullet~~ \Lambda$ is invertible. It is an isometric isomorphism between $L_2[0,\infty)$ and $H_2.$

The inner product in H_2

Given a function $\hat{u} \in H_2$, this defines a function on the imaginary axis which is an element of \hat{L} $_2(j\mathbb{R}).$ We define the inner product of two functions in H_2 to be their inner product as elements of \hat{L} $_2(j\mathbb{R}).$ That is

$$
\langle \hat{u}, \hat{v} \rangle = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{u}^*(j\omega)\hat{v}(j\omega) d\omega
$$

Note that H_2 is a subspace of $L_2(j\mathbb{R})$.

Summary of signal spaces

The signal spaces are

The space \hat{L} $_{\infty}(j\mathbb{R})$

Consider the set of matrix-valued functions

$$
\hat{L}_{\infty} = \left\{G: j\mathbb{R} \rightarrow \mathbb{C}^{p\times m} \; ; \; \|G\|_{\infty} = \operatorname*{ess\,sup}_{\omega \in \mathbb{R}} \overline{\sigma}(\hat{G}(j\omega)) \text{ is finite}\right\}
$$

We will use this as ^a space of *transfer functions*.

Multiplication operators

The function $G \in L_\infty(j\mathbb{R})$ defines a *multiplication operator* $M_{\hat{G}}: L_2(j\mathbb{R}) \to L_2(j\mathbb{R})$

$$
\hat{y} = M_{\hat{G}} \hat{u} \qquad \iff \qquad \hat{y}(j\omega) = \hat{G}(j\omega)\hat{u}(j\omega)
$$

Notes

- \bullet \hat{G} \widetilde{G} is our usual notion of transfer function
- $\bullet~$ Using the Fourier transform, \hat{G} defines a map $G : L_2(-\infty,\infty) \to L_2(-\infty,\infty)$ by

$$
G=\Phi^{-1}M_{\hat G}\Phi
$$

 \bullet If \hat{G} $\hat{\vec{G}}$ is rational, then \hat{G} $\hat{\vec{\jmath}} \in \hat{L}$ ${}_{\infty}(j\mathbb{R})$ if and only if it is proper and has no poles on the imaginary axis.

6 - 20 Linear analysis and systems 2001.10.17.01

The shift operator

The shift operator $S_\tau : L_2(-\infty,\infty) \to L_2(-\infty,\infty)$ is defined by

 $y = S_{\tau}u \iff y(t) = u(t - \tau)$

This is also called the ^τ *-delay*.

Time-invariance

An operator $G: L_2(-\infty, \infty) \to L_2(-\infty, \infty)$ is called *time-invariant* if

$$
GS_{\tau} = S_{\tau}G \qquad \text{for all } \tau \ge 0
$$

Theorem

An operator $G: L_2(-\infty, \infty) \to L_2(-\infty, \infty)$ is time-invariant if and only there exists a function \hat{G} $\hat{\vec{\jmath}} \in \hat{L}$ ${}_{\infty}(j\mathbb{R})$ such that the multiplication operator satisfies

$$
G = \Phi^{-1} M_{\hat{G}} \Phi
$$

The truncation operator

The truncation operator $P_{\tau}: L_2(-\infty, \infty) \to L_2(-\infty, \infty)$ is defined by

Causality

The operator $G: L_2(-\infty, \infty) \to L_2(-\infty, \infty)$ is called *causal* if

 $P_{\tau}GP_{\tau} = P_{\tau}G$ for all $\tau \in \mathbb{R}$

Interpretation

 $y_1 = P_\tau Gu$ is the output signal on $(-\infty, \tau)$ corresponding to input u. $y_2 = P_{\tau}GP_{\tau}u$ is the output signal on $(-\infty, \tau)$ corresponding to input $P_{\tau}u$. If $y_1 = y_2$, then the output before time τ is unaffected by inputs after time τ .

Time-invariance and causality

If G is time-invariant, then it is causal if and only if

 $P_0GP_0 = P_0G$

That is, we need only check the causality condition $P_{\tau}GP_{\tau} = P_{\tau}G$ at $\tau = 0$.

Corollary

A time-invariant operator G is causal if and only if

$$
u \in L_2[0, \infty) \qquad \Longrightarrow \qquad Gu \in L_2[0, \infty)
$$

Notes

• This follows from
$$
P_0G(I - P_0) = 0
$$
.

The space H_{∞}

The set of matrix-valued functions $G:\bar C$ $C^+ \rightarrow \mathbb{C}^{p \times m}$ satisfying the following properties:

- \bullet \hat{G} (s) is analytic in $\mathbb{C}^{+};$
- $\bullet~$ For almost every real number ω

$$
\lim_{\sigma \to 0^+} \hat{G}(\sigma + j\omega) = \hat{G}(j\omega)
$$

• sup $\overline{\sigma}(\hat{G})$ $s{\in}\bar{\mathbb C}^+$ $(s))$ is finite.

Notes

- The norm on H_{∞} is given by $||G||_{\infty} = \operatorname{ess\,sup}_{\omega \in \mathbb{R}} \overline{\sigma}(\hat{G})$ $(j\omega))$
- \bullet If \hat{G} $\hat{\vec{G}}$ is rational, then \hat{G} $\epsilon \in H_\infty$ if and only if it is proper and has no poles in the closed right-half of the complex ^plane.

Theorem

 $\bullet\;$ Every \hat{G} $\epsilon\in H_\infty$ defines a causal, time-invariant operator $G: L_2[0,\,\infty) \to L_2[0,\,\infty).$ $z = Gu$ is defined by the multiplication operator

$$
\hat{z}(j\omega) = \hat{G}(j\omega)\hat{u}(j\omega)
$$

 $\bullet\;$ If $G:L_2[0,\infty)\rightarrow L_2[0,\,\infty)$ is bounded, linear, and time-invariant, then there exists a function \hat{G} $\in H_\infty$ such that

$$
z = Gu \qquad \Longleftrightarrow \qquad \hat{z}(j\omega) = \hat{G}(j\omega)\hat{u}(j\omega)
$$

Notes

- \bullet There is a one-to-one correspondence between functions in H_{∞} and linear timeinvariant (LTI) systems.
- $\bullet~$ We denote the subset of rational functions in H_{∞} by $RH_{\infty}.$
- $\bullet~$ Every function \hat{G} $\in RH_\infty$ can be expressed as

$$
\hat{G}(s) = C(sI - A)^{-1}B + D
$$

for some matrices A, B, C, D .