Engr210a Lecture 6: Linear analysis and systems

- Banach algebras
- Invertibility of operators
- The small-gain theorem
- The spectrum of an operator
- Adjoint operators
- Signal spaces L_2 and H_2
- The Fourier and Laplace transforms
- Time-invariance and causality
- Operator spaces L_∞ and H_∞

Operators

For Banach spaces \mathcal{V} and \mathcal{Z} , the map $F: \mathcal{V} \to \mathcal{Z}$ is a bounded linear operator if

- Linearity: $F(\alpha_1v_1 + \alpha_2v_2) = \alpha_1F(v_1) + \alpha_2F(v_2)$ for all $v_1, v_2 \in \mathcal{V}$ and $\alpha_1, \alpha_2 \in \mathbb{R}$.
- Boundedness: There exists K > 0 such that $||F(v)|| \le K ||v||$ for all $v \in \mathcal{V}$.

Sets of linear operators

- $\mathcal{L}(\mathcal{V}, \mathcal{Z})$ is the set of all bounded linear operators mapping \mathcal{V} to \mathcal{Z} .
- $\mathcal{L}(\mathcal{V})$ is the set of all bounded linear operators mapping \mathcal{V} to itself.

The set $\mathcal{L}(\mathcal{V},\mathcal{Z})$ is a Banach space.

• It is a vector space; we have addition and scalar multiplication. e.g.

$$(F_1 + F_2)(v) = F_1(v) + F_2(v)$$

- It has a norm the induced norm.
- It is *complete*. We will not prove this here.

Banach algebras

As well as being a normed vector space, the set $\mathcal{L}(\mathcal{V})$ has additional structure, since one may compose maps. We write $(F_1F_2)(v) = F_1(F_2(v))$, giving

$$F_1, F_2 \in \mathcal{L}(\mathcal{V}) \implies F_1F_2 \in \mathcal{L}(\mathcal{V})$$

The space $\mathcal{L}(\mathcal{V})$ is called a *Banach algebra*

Axiomatic definition of a Banach algebra

- There exists an element $I \in \mathcal{B}$, such that $F \cdot I = I \cdot F = F$, for all $F \in \mathcal{B}$.
- F(GH) = (FG)H, for all F, G, H in \mathcal{B} .
- F(G+H) = FG + FH, for all F, G, H in \mathcal{B} .
- For all F, G in \mathcal{B} , and each scalar α , we have $F(\alpha G) = (\alpha F)G = \alpha FG$.
- The submultiplicative inequality: $||FG|| \le ||F|| ||G||$.

The submultiplicative inequality

The submultiplicative inequality is

 $\|FG\| \le \|F\| \, \|G\|$

- This is very useful in control; leads to a useful robustness test.
- It follows from the definition of the induced-norm:

 $||FGx|| \le ||F|| ||Gx|| \le ||F|| ||G|| ||x||$

Examples

- The set of linear operators on any Banach space ${\mathcal V}$ forms a Banach algebra.
- The set of $n \times n$ matrices forms a Banach algebra.

Invertibility of operators

An operator $F \in \mathcal{L}(\mathcal{V})$ is called *invertible* if there exists $G \in \mathcal{L}(\mathcal{V})$ such that

FG = I and GF = I

We write $G = F^{-1}$ as usual.

Note that the inverse G must be *bounded*, and that we need both equations to hold. For example, ℓ_2 is the space of square-summable sequences

$$\ell_2 = \left\{ (x_0, x_1, \dots) \ ; \ x_i \in \mathbb{R}^n, \ \sum_{i=0}^{\infty} x_i^* x_i \text{ is finite} \right\}$$

Consider the forward shift operator $Z \in \mathcal{L}(\ell_2)$ where y = Zx if

$$y_k = \begin{cases} x_{k-1} & \text{if } k \ge 1\\ 0 & \text{if } k = 0 \end{cases}$$

This maps (10, 3, 2, ...) to (0, 10, 3, 2, ...).

The *backward shift operator* $B \in \mathcal{L}(\ell_2)$ defined by

$$y = Bx$$
 if $y_k = x_{k+1}$ for all $k \ge 0$

satisfies BZ = I, but not ZB = I. The operator Z is called *not invertible* or *singular*, even though given y one can find x.

The small-gain theorem

Suppose Q is an element of a Banach algebra \mathcal{B} . Then

$$\|Q\| < 1 \qquad \Longrightarrow \qquad I - Q \text{ is invertible, and } (I - Q)^{-1} = \sum_{i=0}^{\infty} Q^k$$

Examples

• If
$$Q = \begin{bmatrix} 0 & 0.5 \\ 0.2 & 0.5 \end{bmatrix}$$
, then $||Q|| = \overline{\sigma}(Q) = 0.72$. Then we know that $I - Q$ is invertible.

• Clearly the reverse implication does not hold. For example, Q = 2I.

Notes

- Here we are only assuming that Q is an element of a Banach algebra. We do not need to use any properties of Q as a linear map.
- The submultiplicative property implies $||PQ|| \le ||P|| ||Q||$. Hence if $||P|| \le 1$

I - PQ is invertible for all operators Q with ||Q|| < 1.

This is very useful when analyzing stability of feedback loops.

Left and right inverses

For $F \in \mathcal{B}$, The operator $L \in \mathcal{B}$ is called the *left-inverse* of F if LF = I.

Similarly, $R \in \mathcal{B}$ is called the *right-inverse* of F if FR = I.

If F has both a left-inverse and a right-inverse, then they are equal, since

$$L = L(BR) = (LB)R = R$$

Series convergence

The infinite sum is defined by

$$\sum_{i=0}^{\infty} Q^i = \lim_{n \to \infty} T_n$$

where T_n is the *partial sum*

$$T_n = \sum_{i=0}^n Q^i$$

i=0

Proof of the small-gain theorem

First, we show $\sum_{i=0}^{\infty} Q^i$ is in the Banach algebra \mathcal{B} . We need to show that $\{T_0, T_1, \dots\}$ is a Cauchy sequence. For m > n,

$$\begin{split} \|T_m - T_n\| &= \left\|\sum_{i=n+1}^m Q^i\right\| \leq \sum_{i=n+1}^m \|Q^i\| \leq \sum_{i=n+1}^m \|Q\|^i\\ \text{Recall the geometric series sum } \sum_{i=n+1}^m a^i = \frac{a^{n+1}(1-a^{m-n})}{1-a}. \text{ Then}\\ \|T_m - T_n\| \leq \frac{\|Q\|^{n+1}}{1-\|Q\|} \quad \text{which implies } \{T_0, T_1, \dots\} \text{ is Cauchy.} \end{split}$$
 Now we show that $\sum_{i=0}^\infty Q^i$ is the right-inverse of $I - Q$.
 $(I - Q) \sum_{k=0}^\infty Q^k = \sum_{k=0}^\infty Q^k - Q \sum_{k=0}^\infty Q^k = I = I + \sum_{k=1}^\infty Q^k - Q \sum_{k=0}^\infty Q^k = I$
Similarly, $\sum_{k=0}^\infty Q^i$ is the left-inverse of $I - Q$ also, and hence it is the inverse of $I - Q$.

The spectrum

Suppose $F \in \mathcal{L}(\mathcal{V})$. The *spectrum* of F is $\operatorname{spec}(F) = \{\lambda \in \mathbb{C} ; (\lambda I - F) \text{ is not invertible}\}$

The *spectral radius* of F is

$$\rho(F) = \max\{|\lambda| ; \lambda \in \operatorname{spec}(F)\}.$$

We say λ is an *eigenvalue* of F if there exists $x \in \mathcal{V}$ such that

$$Fx = \lambda x$$

Clearly, if λ is an eigenvalue of F, then $\lambda \in \operatorname{spec}(F)$. But the converse is not true in general. In general

$$\{\lambda \in \mathbb{C} ; \lambda \text{ is an eigenvalue of } F\} \subseteq \operatorname{spec}(F)$$

These sets are equal for finite-dimensional matrices.

The spectral radius and the norm

The spectral radius satisfies

 $\rho(F) \leq \|F\|$

for all operators $F \in \mathcal{L}(\mathcal{V})$.

Proof

For matrices, one can see this by considering an eigenvector. But in general F may not have eigenvectors.

Suppose $|\lambda| > ||F||$. Then, set $Q = \lambda^{-1}F$, and then ||Q|| < 1, which implies that I - Q is invertible by the small-gain theorem.

Also, if I - Q is invertible, so is $\lambda(I - Q)$, which is

$$\lambda(I-Q) = \lambda(I-\lambda^{-1}F) = \lambda I - F$$

Hence $\lambda \notin \operatorname{spec}(F)$.

The spectrum of a product

Consider operators $P \in \mathcal{L}(\mathcal{U}, \mathcal{V})$ and $Q \in \mathcal{L}(\mathcal{V}, \mathcal{U})$. Then (I - PQ) is invertible $\iff (I - QP)$ is invertible

Proof: If I - PQ is invertible, we can construct the inverse of I - QP according to

$$(I - QP)^{-1} = I + Q(I - PQ)^{-1}P$$

This is called the *Sherman-Morrison-Woodbury* formula, or the *Matrix-inversion lemma*. It can be shown directly by multiplying both sides by I - QP.

The spectrum of a product

An immediate consequence is that, for all $\lambda \in \mathbb{C}$, $\lambda \neq 0$,

$$\lambda \in \operatorname{spec}(PQ) \qquad \Longleftrightarrow \qquad \lambda \in \operatorname{spec}(QP)$$

Proof:

$$\begin{split} \lambda I - PQ \text{ is invertible } & \Longleftrightarrow \ I - \lambda^{-1}PQ \text{ is invertible} \\ & \Longleftrightarrow \ I - \lambda^{-1}QP \text{ is invertible} \\ & \Leftrightarrow \ \lambda I - QP \text{ is invertible} \end{split}$$

The spectrum of a product

Example

$$P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \end{bmatrix} \qquad Q = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} \implies PQ = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \qquad QP = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 1 & 2 & 0 \end{bmatrix}$$

The adjoint operator

Suppose \mathcal{V} and \mathcal{Z} are Hilbert spaces, and $F \in \mathcal{L}(\mathcal{V}, \mathcal{Z})$. The operator $F^* \in \mathcal{L}(\mathcal{Z}, \mathcal{V})$ is called the *adjoint* of F if

$$\langle z, Fv \rangle = \langle F^*z, v \rangle$$

for all $v \in \mathcal{V}$ and $z \in \mathcal{Z}$.

Properties

- $||F^*|| = ||F|| = ||F^*F||^{\frac{1}{2}}$
- $||F||^2 = \rho(F^*F).$

Example

The adjoint of a matrix is the complex conjugate transpose.

Self-adjoint operators

The operator F is called *self-adjoint* or *hermitian* if $F = F^*$.

- If F is self-adjoint, then $\rho(F) = \|F\|.$
- The quadratic form $\langle Fv, v \rangle$ takes only real values.
- If $\lambda \in \operatorname{spec}(F)$, then $\lambda \in \mathbb{R}$.

Positive operators

A self-adjoint operator F is called positive semidefinite, written $F \geq 0,$ if

 $\langle Fv, v \rangle \ge 0$ for all v

A self-adjoint operator F is called *positive definite*, written F > 0, if

there exists $\varepsilon > 0$ such that $\langle Fv, v \rangle \ge \varepsilon \|v\|^2$ for all v

For matrices, this coincides with the usual definition of positive definiteness. If $F \in \mathbb{R}^{n \times n}$

$$F > 0 \qquad \Longrightarrow \qquad \langle Fv, v \rangle = v^* Fv \ge \frac{\lambda_{\min}(F)}{2} v^* v$$

Isometric operators

The operator U is called *isometric* if $U^*U = I$.

Properties

- Angles are preserved: $\langle Uv_1, Uv_2 \rangle = \langle U^*Uv_1, v_2 \rangle = \langle v_1, v_2 \rangle$
- Norms are preserved: ||Uv|| = ||v|| for all v.
- Distances are preserved: $||Uv_1 Uv_2|| = ||v_1 v_2||$.

Unitary operators

The operator U is called *unitary* if

 $U^*U=I \qquad \text{and} \qquad UU^*=I$

A unitary operator $U : \mathcal{U} \to \mathcal{V}$ is called an *isomorphism*.

Example

$$F = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$
 is isometric, but not unitary

The L_2 spaces

The Hilbert space $L_2(-\infty,\infty)$ is the set of functions $u: \mathbb{R} \to \mathbb{C}^n$ with inner product

$$\langle u, v \rangle = \int_{-\infty}^{\infty} u(t)^* v(t) \, dt$$

The Hilbert space $\hat{L}_2(j\mathbb{R})$ is the set of functions $\hat{u}: j\mathbb{R} \to \mathbb{C}^n$ with inner product

$$\langle \hat{u}, \hat{v} \rangle = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{u}(j\omega)^* \hat{v}(j\omega) dt$$

The Fourier Transform

The Fourier transform is a map $\Phi: L_2(-\infty,\infty) \to \hat{L}_2(j\mathbb{R})$ defined by

$$\Phi: u \mapsto \hat{u} \qquad \qquad \hat{u}(j\omega) = \int_{-\infty}^{\infty} u(t)e^{-j\omega t} dt$$

- Φ is a bounded linear operator.
- Φ is invertible. The inverse is given by $u(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{u}(j\omega) e^{j\omega t} d\omega$.

• Φ is unitary. It is an isomorphism between $L_2(-\infty,\infty)$ and $\hat{L}_2(j\mathbb{R})$.

Frequency domain spaces

The open right-half plane and closed right half-plane are

$$\mathbb{C}^{+} = \left\{ z \in \mathbb{C} ; \operatorname{Re}(z) > 0 \right\} \quad \text{and} \quad \bar{\mathbb{C}}^{+} = \left\{ z \in \mathbb{C} ; \operatorname{Re}(z) \ge 0 \right\}$$

The space H_2

The space H_2 is the set of functions $\hat{u}: \overline{\mathbb{C}}^+ \to \mathbb{C}^n$ for which

- \hat{u} is analytic in the open right-half plane \mathbb{C}^+ .
- For almost every real number ω ,

$$\hat{u}(j\omega) = \lim_{\sigma \to 0^+} \hat{u}(\sigma + j\omega)$$

• The maximum integral over a vertical line $\operatorname{Re}(z) = \sigma$ in \overline{C}^+

$$\sup_{\sigma \ge 0} \int_{-\infty}^{\infty} \|\hat{u}(\sigma + j\omega)\|_2^2 d\omega \qquad \text{ is finite}$$

Rational functions

A rational function \hat{u} is in H_2 if it is strictly proper and has no poles in the closed right-half plane.

The Laplace transform

The Laplace transform $\Lambda: u \mapsto \hat{u}$ is defined by

$$\hat{u}(s) = \int_0^\infty u(t) e^{-st} \, dt$$

Notes

- $\Lambda: L_2[0,\infty) \to H_2$
- Λ is a bounded linear operator.
- Λ is invertible. It is an isometric isomorphism between $L_2[0,\infty)$ and H_2 .

The inner product in H_2

Given a function $\hat{u} \in H_2$, this defines a function on the imaginary axis which is an element of $\hat{L}_2(j\mathbb{R})$. We define the inner product of two functions in H_2 to be their inner product as elements of $\hat{L}_2(j\mathbb{R})$. That is

$$\langle \hat{u}, \hat{v} \rangle = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{u}^*(j\omega) \hat{v}(j\omega) \, d\omega$$

Note that H_2 is a subspace of $L_2(j\mathbb{R})$.

Summary of signal spaces

The signal spaces are

2001.10.17.01

The space $\hat{L}_{\infty}(j\mathbb{R})$

Consider the set of matrix-valued functions

$$\hat{L}_{\infty} = \left\{ G : j\mathbb{R} \to \mathbb{C}^{p \times m} ; \|G\|_{\infty} = \operatorname{ess\,sup}_{\omega \in \mathbb{R}} \overline{\sigma}(\hat{G}(j\omega)) \text{ is finite} \right\}$$

We will use this as a space of *transfer functions*.

Multiplication operators

The function $G \in L_{\infty}(j\mathbb{R})$ defines a *multiplication operator* $M_{\hat{G}} : L_2(j\mathbb{R}) \to L_2(j\mathbb{R})$

$$\hat{y} = M_{\hat{G}} \hat{u} \qquad \Longleftrightarrow \qquad \hat{y}(j\omega) = \hat{G}(j\omega) \hat{u}(j\omega)$$

Notes

- \hat{G} is our usual notion of transfer function
- Using the Fourier transform, \hat{G} defines a map $G: L_2(-\infty,\infty) \to L_2(-\infty,\infty)$ by

$$G = \Phi^{-1} M_{\hat{G}} \Phi$$

• If \hat{G} is rational, then $\hat{G} \in \hat{L}_{\infty}(j\mathbb{R})$ if and only if it is proper and has no poles on the imaginary axis.

6 - 20 Linear analysis and systems

The shift operator

The shift operator $S_{\tau}: L_2(-\infty,\infty) \to L_2(-\infty,\infty)$ is defined by

 $y = S_{\tau} u \qquad \iff \qquad y(t) = u(t - \tau)$

This is also called the τ -delay.

Time-invariance

An operator $G: L_2(-\infty,\infty) \to L_2(-\infty,\infty)$ is called *time-invariant* if

$$GS_{\tau} = S_{\tau}G$$
 for all $\tau \ge 0$

Theorem

An operator $G: L_2(-\infty, \infty) \to L_2(-\infty, \infty)$ is time-invariant if and only there exists a function $\hat{G} \in \hat{L}_{\infty}(j\mathbb{R})$ such that the multiplication operator satisfies

$$G = \Phi^{-1} M_{\hat{G}} \Phi$$

The truncation operator

The truncation operator $P_{ au}: L_2(-\infty,\infty) \to L_2(-\infty,\infty)$ is defined by

Causality

The operator $G: L_2(-\infty, \infty) \to L_2(-\infty, \infty)$ is called *causal* if

 $P_{\tau}GP_{\tau} = P_{\tau}G \qquad \text{ for all } \tau \in \mathbb{R}$

Interpretation

 $y_1 = P_{\tau}Gu$ is the output signal on $(-\infty, \tau)$ corresponding to input u. $y_2 = P_{\tau}GP_{\tau}u$ is the output signal on $(-\infty, \tau)$ corresponding to input $P_{\tau}u$. If $y_1 = y_2$, then the output before time τ is unaffected by inputs after time τ .

Time-invariance and causality

If G is time-invariant, then it is causal if and only if

 $P_0 G P_0 = P_0 G$

That is, we need only check the causality condition $P_{\tau}GP_{\tau} = P_{\tau}G$ at $\tau = 0$.

Corollary

A time-invariant operator ${\boldsymbol{G}}$ is causal if and only if

$$u \in L_2[0,\infty) \implies Gu \in L_2[0,\infty)$$

Notes

• This follows from
$$P_0G(I - P_0) = 0$$
.

The space H_{∞}

The set of matrix-valued functions $G: \overline{C}^+ \to \mathbb{C}^{p \times m}$ satisfying the following properties:

- $\hat{G}(s)$ is analytic in \mathbb{C}^+ ;
- For almost every real number ω

$$\lim_{\sigma\to 0^+} \hat{G}(\sigma+j\omega) = \hat{G}(j\omega)$$

• $\sup_{s\in \bar{\mathbb{C}}^+} \overline{\sigma}(\hat{G}(s))$ is finite.

Notes

- The norm on H_{∞} is given by $||G||_{\infty} = \operatorname{ess\,sup}_{\omega \in \mathbb{R}} \overline{\sigma}(\hat{G}(j\omega))$
- If \hat{G} is rational, then $\hat{G} \in H_{\infty}$ if and only if it is proper and has no poles in the closed right-half of the complex plane.

Theorem

• Every $\hat{G} \in H_{\infty}$ defines a causal, time-invariant operator $G : L_2[0, \infty) \to L_2[0, \infty)$. z = Gu is defined by the multiplication operator

$$\hat{z}(j\omega) = \hat{G}(j\omega)\hat{u}(j\omega)$$

• If $G: L_2[0,\infty) \to L_2[0,\infty)$ is bounded, linear, and time-invariant, then there exists a function $\hat{G} \in H_\infty$ such that

$$z = Gu \qquad \iff \qquad \hat{z}(j\omega) = \hat{G}(j\omega)\hat{u}(j\omega)$$

Notes

- There is a one-to-one correspondence between functions in H_∞ and linear time-invariant (LTI) systems.
- We denote the subset of rational functions in H_{∞} by RH_{∞} .
- Every function $\hat{G} \in RH_{\infty}$ can be expressed as

$$\hat{G}(s) = C(sI - A)^{-1}B + D$$

for some matrices A, B, C, D.