Engr210a Lecture 7: System models and model reduction

- Correspondence between state-space systems and transfer functions
- Stability and minimal realizations
- The induced norm
- The H_∞ norm
- Bode plots
- Measuring the difference between systems
- Additive uncertainty
- Model reduction

State-space systems

Suppose (A, B, C, D) is a stable state-space system. Construct the transfer function

$$\hat{G}(s) = C(sI - A)^{-1}B + D$$

- The transfer function $\hat{G} \in H_{\infty}$, since it is analytic and bounded in \bar{C}^+ and continuous along the imaginary axis.
- Hence the multiplication operator mapping $M_{\hat{G}}: H_2 \rightarrow H_2$ defined by

$$\hat{y} = M_{\hat{G}}\hat{u} \qquad \iff \qquad \hat{y}(j\omega) = \hat{G}(j\omega)\hat{u}(j\omega)$$

is a bounded linear operator on H_2 .

- The system is causal, and time-invariant because multiplication operators defined by elements of H_{∞} define causal and time-invariant linear systems.
- H_2 is isomorphic to $L_2[0,\infty)$ via the Laplace transform $\Lambda: L_2[0,\infty) \to H_2$, so the operator G defined by

$$G = \Lambda^{-1} M_{\hat{G}} \Lambda$$

is a *bounded linear operator* on $L_2[0,\infty)$.

Conclusion: Every stable state-space linear system defines a bounded linear operator on the space of signals $L_2[0,\infty)$.

State-space systems

Suppose the map $G: L_2[0,\infty) \to L_2[0,\infty)$ is bounded, linear, and time-invariant.

• G defines a bounded linear operator $\check{G}: H_2 \rightarrow H_2$ via the Laplace transform

$$\check{G} = \Lambda G \Lambda^{-1}$$

 Since G is linear and time-invariant, Ğ is the multiplication operator corresponding to a function Ĝ ∈ H_∞.

$$\check{G} = M_{\hat{G}} \qquad \qquad \hat{y} = M_{\hat{G}} \hat{u} \quad \iff \quad \hat{y}(j\omega) = \hat{G}(j\omega)\hat{u}(j\omega)$$

• If the function \hat{G} is rational, then it has a minimal state-space realization (A, B, C, D) which satisfies

$$\hat{G} = C(sI - A)^{-1}B + D$$

- Since $\hat{G} \in H_{\infty}$, the function $\overline{\sigma}(\hat{G}(\cdot))$ is bounded in the closed right-half plane. This implies that \hat{G} has no poles in the closed right-half plane.
- This implies that the system

$$\dot{x}(t) = Ax(t)$$

is stable, which we show next.

Stability

If (A, B, C, D) is a minimal realization for a transfer function $\hat{G}(s)$, and \hat{G} has no poles in the closed right-half plane, then the system

$$\dot{x}(t) = Ax(t)$$

is stable.

Recall facts

• We say $\hat{G}: \mathbb{C} \to \mathbb{C}^{p \times m}$ has a pole at $\lambda \in \mathbb{C}$ if there is some i, j so that the element

$$\lim_{s \to \lambda} |\hat{G}_{ij}(s)| = \infty$$

This is equivalent to

$$\lim_{s \to \lambda} \,\overline{\sigma}(G)(s) = \infty$$

• The system

$$\dot{x}(t) = Ax(t)$$

is stable if and only if all eigenvalues of A have strictly negative real part; that is

$$\lambda \in \operatorname{spec}(A) \implies \operatorname{Re}(\lambda) < 0$$

In this case the matrix A is called a *Hurwitz* matrix.

Simple case

Suppose A has only one eigenvalue λ_1 , possibly repeated. Then if (A, B, C, D) is a minimal realization for \hat{G} , then λ_1 is a pole of \hat{G} .

Proof

 \hat{G} is a proper rational function, and if λ is a pole of G then λ is an eigenvalue of A. Hence either there is an element of \hat{G} such that

$$\hat{G}_{ij}(s) = \frac{c_1 s + c_0}{s - \lambda_1}$$

with $c_1\lambda_1 + c_0 \neq 0$, or \hat{G} is just a constant matrix, say $\hat{G}(s) = G_0$. But if that were the case, then we would be able to realize \hat{G} with the realization $(\emptyset, \emptyset, \emptyset, G_0)$, a zero'th order realization, contradicting the assumption that (A, B, C, D) is minimal.

General case

Suppose (A, B, C, D) is a minimal realization for \hat{G} . Then if $\lambda \in \operatorname{spec}(A)$, then λ is a pole of \hat{G} .

Proof: Choose coordinates so that A is in Jordan form

$$A = \begin{bmatrix} J_1 & & \\ & J_2 & \\ & & \ddots & \\ & & & J_q \end{bmatrix}$$

Choose the blocks so that each J_i has only one eigenvalue, λ_i , and $\lambda_i \neq \lambda_j$ if i = j. Partition B and C compatibly with A so that

$$B = \begin{bmatrix} B_1 \\ \vdots \\ B_q \end{bmatrix} \qquad C = \begin{bmatrix} C_1 & \dots & C_q \end{bmatrix}$$

Then

$$C(sI - A)^{-1}B + D = \sum_{i=1}^{q} \left(C_i(sI - J_i)^{-1}B_i \right) + D$$

By our previous argument, $C_i(sI - J_i)^{-1}B_i$ must have a pole at λ_i , and $\lambda_i \neq \lambda_j$ so terms in different blocks cannot cancel.

State-space systems

We can think of systems in three ways

• Bounded linear operators

For every causal time-invariant bounded linear operator on $L_2[0,\infty)$ there is a corresponding function in H_{∞} .

• Functions in H_{∞} .

For every rational function in $H_\infty,$ there is a corresponding stable state-space system.

(There are also some unstable ones, whose unstable states are uncontrollable or unobservable, but any minimal realization will be stable.)

• State-space realizations

For every stable, linear time-invariant state-space system there is a causal time-invariant bounded linear operator on $L_2[0,\infty)$.

The corresponding H_{∞} function is rational.

Norms on systems

The abbreviation LTI stands for *linear, time-invariant*. We now have two norms on stable LTI systems $G: L_2[0, \infty) \to L_2[0, \infty)$.

• Since H_{∞} is a Banach space, we have the norm

$$\|G\|_{\infty} = \operatorname{ess\,sup}_{\omega \in \mathbb{R}} \overline{\sigma}(\hat{G}(j\omega))$$

• The induced norm on $L_2[0,\infty)$

$$||G|| = \sup_{\substack{u \in L_2[0,\infty)\\ u \neq 0}} \frac{||Gu||}{||u||}$$

Theorem

These two norms are equal.

Theorem

The H_{∞} norm is equal to the induced $L_2[0,\infty)$ norm.

$$\sup_{\omega \in \mathbb{R}} \|\hat{G}(j\omega)\| = \sup_{\omega \in \mathbb{R}} \overline{\sigma}(\hat{G}(j\omega)) = \|\hat{G}\|_{\infty} = \|G\| = \sup_{\substack{u \in L_2[0,\infty)\\ u \neq 0}} \frac{\|Gu\|}{\|u\|}$$

Proof: First, we prove $||G|| \leq ||\hat{G}||_{\infty}$. Suppose y = Gu. Then, taking Laplace transforms, $\hat{y}, \hat{u} \in H_2$, and $\hat{y}(j\omega) = \hat{G}(j\omega)\hat{u}(j\omega)$. Since the Laplace transform is isometric,

$$\begin{split} \|y\|^{2} &= \|\hat{y}\|^{2} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \|\hat{y}(j\omega)\|^{2} d\omega \\ &= \frac{1}{2\pi} \int_{-\infty}^{\infty} \|\hat{G}(j\omega)\hat{u}(j\omega)\|^{2} d\omega \\ &\leq \frac{1}{2\pi} \|\hat{G}(j\omega)\|_{\infty}^{2} \int_{-\infty}^{\infty} \|\hat{u}(j\omega)\|^{2} d\omega \\ &= \|\hat{G}(j\omega)\|_{\infty}^{2} \|\hat{u}\|^{2} \\ &= \|\hat{G}(j\omega)\|_{\infty}^{2} \|u\|^{2} \end{split}$$

Proof continued

Now we prove that $||G|| \ge ||\hat{G}||_{\infty}$.

Given $\varepsilon > 0$, we need to construct a signal $u \in L_2[0,\infty)$ such that

$$\|y\|_2 \ge (\|\hat{G}\|_{\infty} - \varepsilon)\|u\|_2$$

Since $\hat{G} \in H_{\infty}$ and $H_{\infty} \subset L_{\infty}$, we have $\hat{G} \in L_{\infty}$. Then \hat{G} defines a causal LTI operator on $L_2(-\infty,\infty)$. Taking Fourier transforms, this is defined by multiplication

$$\hat{y}(j\omega) = \hat{G}(j\omega)\hat{u}(j\omega)$$

where $\hat{y}, \hat{u} \in L_2(j\mathbb{R})$.

Choose a function \hat{u} which has a narrow peak such that

$$\|\hat{y}\|^{2} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \|\hat{G}(j\omega)\hat{u}(j\omega)\|^{2} d\omega \ge (\|\hat{G}\|_{\infty} - \varepsilon)^{2} \|\hat{u}\|^{2}$$

Now $\hat{u} = \Phi u$, the Fourier transform of $u \in L_2(-\infty, \infty)$. Therefore $u(t) \to 0$ as $t \to \infty$, and we can truncate it at a sufficiently negative time $\tau \ll 0$ and it will still satisfy the above inequality. Set u_2 equal to this truncation, $u_2 = (I - P_{\tau})u$, and let $u_3 = S_{\tau}u_2$, which is the same signal shifted forward so that $u_3 \in L_2[0,\infty)$. Then u_3 also satisfies the inequality, and $Gu_3 \in L_2[0,\infty)$.

Bode Plots

$$\hat{G}(s) = \begin{bmatrix} \frac{10(s+1)}{s^2 + 0.2s + 100} & \frac{1}{s+1} \\ \frac{s+2}{s^2 + 0.1s + 10} & \frac{5(s+1)}{(s+2)(s+3)} \end{bmatrix}$$

||G|| = 50.25

The induced-norm

- ||G|| is called the *induced-norm* or the *H-infinity* norm of *G*.
- If G is stable, then $\hat{G} \in H_{\infty}$, so ||G|| is finite, and

$$\|\hat{G}\|_{\infty} = \sup_{s \in \bar{\mathbb{C}}^+} \overline{\sigma}(\hat{G}(s)) = \sup_{\omega \in \mathbb{R}} \overline{\sigma}(\hat{G}(j\omega))$$

• If G is unstable, then the induced-norm ||G|ite, and $\sup_{s\in\bar{\mathbb{C}}^+}\overline{\sigma}(\hat{G}(s))$

is not finite.

Caveat

If G is unstable, then

$$\sup_{\omega \in \mathbb{R}} \overline{\sigma}(\hat{G}(j\omega)) = \sup_{\omega \in \mathbb{R}} \overline{\sigma}(C(j\omega I - A)^{-1}B + D)$$

may be finite. Even if \hat{G} is not analytic in the closed right-half plane and hence $\hat{G} \notin H_{\infty}$, we can still have $G \in L_{\infty}(j\mathbb{R})$.

$$|\widehat{G}||$$
 is not find

The induced-norm

An important use of the norm is in measuring the difference between two systems.

Example: 2 inputs, 2 output system. Inputs are forces applied to masses 1 and 3, outputs are positions of masses 1 and 2.

 G_1 has $m_i = 1$, $k_i = 1$, $b_i = 0.2$. G_2 has $m_i = 0.95$, $k_i = 1$, $b_i = 0.35$. $||G_1|| = 30.93$, $||G_2|| = 16.37$, $||G_1 - G_2|| = 16.42$.

Robust control, first approach

Instead of trying to design a control system for G_1 or G_2 , try to design a controller that achieves a specified level of performance for any G such that

 $\|G - G_{\mathsf{nominal}}\| < c$

In other words, design a controller that will work for any ${\cal G}$ such that

 $G = G_{\text{nominal}} + \Delta$ for some Δ with $\|\Delta\| < c$

This sounds reasonable, but leads to large uncertainty at small values of $\hat{G}(j\omega)$.

Weighted additive uncertainty

Design a controller that achieves a specified level of performance for any G such that

 $G = G_{\text{nominal}} + W\Delta$ for some Δ with $\|\Delta\| < c$

Here W is a transfer function, chosen to be small at frequencies where the model is good, and large elsewhere.

Weighted additive uncertainty

Design a controller that achieves a specified level of performance for any G such that

 $G = G_{\text{nominal}} + W\Delta$ for some Δ with $\|\Delta\| < c$

We are therefore trying to do a control design for a set of systems, not just a single system. This particular set is a ball in H_{∞} . It is called a weighted additive uncertainty ball.

We can also represent this as the above block-diagram, called a *linear-fractional transfor-mation*.

Here the system
$$G = \begin{bmatrix} 0 & I \\ W & G \end{bmatrix}$$
 is called *the generalized plant*.

Model reduction

Suppose $G \in H_{\infty}$ has a minimal realization of dimension n. Given r < n, we would like to find the $G_{\text{reduced}} \in H_{\infty}$ which minimizes

 $\|G - G_{\mathsf{reduced}}\|$

Notes

- This problem has a long history. It is known as the optimal H_{∞} model reduction problem.
- Since $G \in H_{\infty}$, this only makes sense for stable systems.
- Once we have G_{reduced} , we can use it for control design. In particular, we can design a controller robust to the error between G and G_{reduced} . Typically this requires much less computational time than designing for G.