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Engr210a Lecture 7: System models and model reduction

e (Correspondence between state-space systems and transfer functions
e Stability and minimal realizations

e The induced norm

e The H,, norm

e Bode plots

e Measuring the difference between systems

e Additive uncertainty

e Model reduction
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State-space systems
Suppose (A, B,C, D) is a stable state-space system. Construct the transfer function
G(s)=C(sI —A)'B+D
e The transfer function G € H,, since it is analytic and bounded in C* and continuous
along the imaginary axis.
e Hence the multiplication operator mapping M : Hy — H> defined by
= Mgi = jlw) = Glw)ile)
is a bounded linear operator on Hs.

e The system is causal, and time-invariant because multiplication operators defined by
elements of H., define causal and time-invariant linear systems.

e H, is isomorphic to Ly|0, 00) via the Laplace transform A : 150, 00) — Hj, so the
operator GG defined by

G = A_lMé/\
is a bounded linear operator on 5|0, 00).

Conclusion: Every stable state-space linear system defines a bounded linear operator on
the space of signals L5|0, c0).



7 -3 System models and model reduction 2001.10.16.03
State-space systems

Suppose the map GG : L5|0, 00) — L5[0, 0o) is bounded, linear, and time-invariant.

e G defines a bounded linear operator G : Hy — H via the Laplace transform
G = AGA™!
e Since GG is Iinegr and time-invariant, G is the multiplication operator corresponding
to a function G € H..
G = Mg y=Ms <= yljw)=Gw)u(jw)

e Ifthe function G is rational, then it has a minimal state-space realization (A, B,C, D)
which satisfies

G=C(sI—A"'B+D

e Since G € H, the function o(G(-)) is bounded in the closed right-half plane. This
implies that G has no poles in the closed right-half plane.

e This implies that the system
t(t) = Ax(t)

is stable, which we show next.
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Stability

If (A, B,C, D) is a minimal realization for a transfer function G(S) and G has no poles
in the closed right-half plane, then the system

#(t) = Ax(t)

is stable.

Recall facts

o We say G : C — CP*™ has a pole at A € C if there is some 7, 7 so that the element
5— A
This is equivalent to

lim 7(G)(s) = o0

S—A
e [he system
t(t) = Ax(t)
is stable if and only if all eigenvalues of A have strictly negative real part; that is
A € spec(A) — Re(A) <0

In this case the matrix A is called a Hurwitz matrix.
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Simple case

Suppose A has only one eigenvalue \{, possibly repeated. Then if (A, B,C,D) is a
minimal realization for (&, then \; is a pole of G.

Proof

Gis a proper rational function, and if A is a pole of G then A is an eigenvalue of A.
Hence either there is an element of GG such that

A C1S + ¢y
Gii(s) = —
Z]( > S — )\1
with c1 A1 + ¢ # 0, or G is just a constant matrix, say G(s) = (. But if that were the

case, then we would be able to realize G with the realization (), 0,0, Gy), a zero'th order
realization, contradicting the assumption that (A, B, C, D) is minimal.
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General case

Suppose (A, B,C, D) is a minimal realization for G. Then if X € spec(A), then X is a
pole of (5.

Proof: Choose coordinates so that A is in Jordan form

Jp

A=| "

Jg

Choose the blocks so that each J; has only one eigenvalue, A\;, and \; # A\, if ¢ = j.
Partition B and C' compatibly with A so that

B=|: C=1[C ... C]

Then .
C(sT—A)'B+D=Y" (Cz-(s] _ Ji)‘lBi) +D
1=1

By our previous argument, C;(s] — .J;)~'B; must have a pole at \;, and \; # \; so terms
in different blocks cannot cancel.



7 -7 System models and model reduction 2001.10.16.03

State-space systems

We can think of systems in three ways

e Bounded linear operators

For every causal time-invariant bounded linear operator on L5|0, 00) there
is a corresponding function in H .

e Functions in H.

For every rational function in H,, there is a corresponding stable state-
space system.

(There are also some unstable ones, whose unstable states are uncontrollable or unobserv-
able, but any minimal realization will be stable.)

e State-space realizations

For every stable, linear time-invariant state-space system there is a causal
time-invariant bounded linear operator on Ls[0, 00).

The corresponding H . function is rational.
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Norms on systems

The abbreviation LTI stands for linear, time-invariant.

We now have two norms on stable LTI systems G : L|0, 00) — L»|0, 00).

e Since H., is a Banach space, we have the norm

AN

|G| = esssup (G (jw))

weR
e The induced norm on L;|0, 00)
Gu
= sp 10U
u€ L9[0,00) HuH
u7#0

Theorem

These two norms are equal.
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Theorem

The H,, norm is equal to the induced Ls[0, 00) norm.

(i —=((Y( 7 A Gu

sup G )| = sup TG ) = [ Clle = 6] = sup I

weR weR e Lo[0,00) HuH
u7#0

Proof: First, we prove ||G| < ||G|ls. Suppose y = Gu. Then, taking Laplace trans-
forms, y,u € Hy, and y(jw) = G(jw)u(jw).

Since the Laplace transform is isometric,

1 o
b= [ )P d

1 BTN
— 5 | IGGwa)P i

1 ~
< GG [ N do
— IG G I2
GG, ]

lyll* =11
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Proof continued

Now we prove that |G| > ||G]|w.

Given € > 0, we need to construct a signal u € L5|0, 00) such that
yll2 = ([|Glloe = &)l[ull2

Since G € H, and H,, C L, we have G € L. Then G defines a causal LT operator
on Ly(—00,00). Taking Fourier transforms, this is defined by multiplication

AN

y(jw) = Gljw)u(jw)
where y, 4 € Ly(JR).
Choose a function u which has a narrow peak such that

1 A, A
b= o |GGG P d > (1G] - o

,a 2

J 2T

Now @ = ®u, the Fourier transform of u € Ly(—00, 00). Therefore u(t) — 0 ast — oo,
and we can truncate it at a sufficiently negative time 7 < 0 and it will still satisfy the
above inequality. Set wus equal to this truncation, us = (I — P;)u, and let uz = S;us,
which is the same signal shifted forward so that us € L5|0, 00). Then w3 also satisfies the
inequality, and Gus € Ls[0, 00).
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Bode Plots
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The induced-norm

e ||G|| is called the induced-norm or the H-infinity norm of G.

o If G is stable, then G € H,, so ||G]| is finite, and
|Gl = sup 7(G(s)) = sup 7(G(jw))

seCt weR

e If GG is unstable, then the induced-norm ||G|| is not finite, and

sup o(G(s))

seC+

is not finite.
Caveat

If (G is unstable, then
sup 7(G(jw)) = sup 7(C(jwl — A)"'B + D)

weR weR

may be finite. Even if G is not analytic in the closed right-half plane and hence G ¢ H,
we can still have G € L (jR).
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The induced-norm

An important use of the norm is in measuring the difference between two systems.

— mi - mo - ms3
— — —
b by by

Example: 2 inputs, 2 output system. Inputs are forces applied to masses 1 and 3, outputs
are positions of masses 1 and 2.

Gihasm; =1,k =1,b;=0.2. Gy hasm; =0.95, k; =1, b; = 0.35.
1G]] = 30.93, ||Gs|| = 16.37, ||G1 — G| = 16.42.

) singular values versus frequency ) singular values versus frequency
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Robust control, first approach

Instead of trying to design a control system for (G or (G, try to design a controller that
achieves a specified level of performance for any GG such that

HG - GnominaIH < cC

In other words, design a controller that will work for any GG such that

G = Grominal + A for some A with ||[A|l < ¢

This sounds reasonable, but leads to large uncertainty at small values of é(jw).

singular values versus frequency

— Uncertainty ball |]
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Weighted additive uncertainty

Design a controller that achieves a specified level of performance for any G such that

G = Grominal = WA for some A with [|A|| < ¢

Here W is a transfer function, chosen to be small at frequencies where the model is good,
and large elsewhere.

singular values versus frequency

— Uncertainty ball |]
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Weighted additive uncertainty
Design a controller that achieves a specified level of performance for any G such that

G = Grominal = WA for some A with [|A|| < ¢

We are therefore trying to do a control design for a set of systems, not just a single system.
This particular set is a ball in H.. It is called a weighted additive uncertainty ball.

A

A C.

Tnominal

0 [
y =W G

u

We can also represent this as the above block-diagram, called a linear-fractional transfor-
mation.

Here the system G = [V?/ é] is called the generalized plant.
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Model reduction

Suppose GG € H,, has a minimal realization of dimension n. Given r < n, we would like
to find the Greduced € Ho Which minimizes

HG — GreducedH

Notes

e This problem has a long history. It is known as the optimal H., model reduction
problem.

e Since G € H,, this only makes sense for stable systems.

e Once we have Gequced, We can use it for control design. In particular, we can design
a controller robust to the error between G and Gequced- Typically this requires much
less computational time than designing for G.



