Engr210a Lecture 7: System models and model reduction

- Correspondence between state-space systems and transfer functions
- Stability and minimal realizations
- The induced norm
- The H_{∞} norm
- Bode plots
- Measuring the difference between systems
- Additive uncertainty
- Model reduction

State-space systems

Suppose (A, B, C, D) is a stable state-space system. Construct the transfer function

$$
\hat{G}(s) = C(sI - A)^{-1}B + D
$$

- $\bullet~$ The transfer function \hat{G} $\epsilon \in H_\infty$, since it is analytic and bounded in $\bar C$ \mathbb{C}^+ and continuous along the imaginary axis.
- $\bullet~$ Hence the multiplication operator mapping $M_{\hat{G}}:H_2\rightarrow H_2$ defined by

$$
\hat{y} = M_{\hat{G}} \hat{u} \qquad \iff \qquad \hat{y}(j\omega) = \hat{G}(j\omega)\hat{u}(j\omega)
$$

is a bounded linear operator on H_2 .

- The system is causal, and time-invariant because multiplication operators defined by elements of H_{∞} define causal and time-invariant linear systems.
- \bullet H_2 is isomorphic to $L_2[0,\infty)$ via the Laplace transform $\Lambda:L_2[0,\infty)\rightarrow H_2$, so the operator G defined by

$$
G = \Lambda^{-1} M_{\hat{G}} \Lambda
$$

is a *bounded linear operator* on $L_2[0,\infty)$.

Conclusion: Every stable state-space linear system defines ^a bounded linear operator on the space of signals $L_2[0,\infty)$.

State-space systems

Suppose the map $G: L_2[0, \infty) \to L_2[0, \infty)$ is bounded, linear, and time-invariant.

 $\bullet\;$ G defines a bounded linear operator $\check G$ $H_1:H_2\to H_2$ via the Laplace transform

$$
\check{G} = \Lambda G \Lambda^{-1}
$$

 \bullet Since G is linear and time-invariant, $\check G$ is the multiplication operator corresponding to a function \hat{G} $G\in H_\infty.$

$$
\check{G} = M_{\hat{G}} \qquad \qquad \hat{y} = M_{\hat{G}} \hat{u} \qquad \Longleftrightarrow \qquad \hat{y}(j\omega) = \hat{G}(j\omega)\hat{u}(j\omega)
$$

• If the function \hat{G} is rational, then it has a minimal state-space realization (A,B,C,D) which satisfies

$$
\hat{G} = C(sI - A)^{-1}B + D
$$

- Since \hat{G} $\in H_\infty$, the function $\overline{\sigma}(\hat{G})$ $(\cdot))$ is bounded in the closed right-half plane. This implies that \hat{G} has no poles in the closed right-half ^plane.
- This implies that the system

$$
\dot{x}(t) = Ax(t)
$$

is stable, which we show next.

Stability

If (A,B,C,D) is a minimal realization for a transfer function \hat{G} (s) , and \hat{G} has no poles in the closed right-half ^plane, then the system

$$
\dot{x}(t) = Ax(t)
$$

is stable.

Recall facts

 $\bullet\;$ We say \hat{G} : $\mathbb{C}\to\mathbb{C}^{p\times m}$ has a pole at $\lambda\in\mathbb{C}$ if there is some i,j so that the element

$$
\lim_{s \to \lambda} |\hat{G}_{ij}(s)| = \infty
$$

This is equivalent to

$$
\lim_{s \to \lambda} \overline{\sigma}(G)(s) = \infty
$$

• The system

$$
\dot{x}(t) = Ax(t)
$$

is stable if and only if all eigenvalues of A have strictly negative real part; that is

$$
\lambda \in \text{spec}(A) \qquad \Longrightarrow \qquad \text{Re}(\lambda) < 0
$$

In this case the matrix A is called ^a *Hurwitz* matrix.

Simple case

Suppose A has only one eigenvalue λ_1 , possibly repeated. Then if (A, B, C, D) is a minimal realization for \hat{G} , then λ_1 is a pole of \hat{G} $\boldsymbol{\pi}$.

Proof

 \hat{G} is a proper rational function, and if λ is a pole of G then λ is an eigenvalue of $A.$ Hence either there is an element of \hat{G} $\mathcal G$ such that

$$
\hat{G}_{ij}(s) = \frac{c_1s + c_0}{s - \lambda_1}
$$

with $c_1\lambda_1+c_0\neq 0$, or \hat{G} is just a constant matrix, say \hat{G} $(s)=G_0.$ But if that were the case, then we would be able to realize \hat{G} with the realization $(\emptyset, \emptyset, \emptyset, G_0)$, a zero'th order realization, contradicting the assumption that (A, B, C, D) is minimal.

General case

Suppose (A,B,C,D) is a minimal realization for \hat{G} . Then if $\lambda \in \mathrm{spec}(A)$, then λ is a pole of \hat{G} $\boldsymbol{\pi}$.

Proof: Choose coordinates so that A is in Jordan form

$$
A = \begin{bmatrix} J_1 & & & \\ & J_2 & & \\ & & \ddots & \\ & & & J_q \end{bmatrix}
$$

Choose the blocks so that each J_i has only one eigenvalue, λ_i , and $\lambda_i \neq \lambda_j$ if $i = j$. Partition B and C compatibly with A so that

$$
B = \begin{bmatrix} B_1 \\ \vdots \\ B_q \end{bmatrix} \qquad C = \begin{bmatrix} C_1 & \dots & C_q \end{bmatrix}
$$

Then

$$
C(sI - A)^{-1}B + D = \sum_{i=1}^{q} \left(C_i(sI - J_i)^{-1}B_i\right) + D
$$

By our previous argument, $C_i(sI-J_i)^{-1}B_i$ must have a pole at λ_i , and $\lambda_i \neq \lambda_j$ so terms in different blocks cannot cancel.

State-space systems

We can think of systems in three ways

• **Bounded linear operators**

For every causal time-invariant bounded linear operator on $L_2[0,\infty)$ there is a corresponding function in H_{∞} .

• **Functions in** H[∞].

For every *rational* function in H_{∞} , there is a corresponding stable statespace system.

(There are also some unstable ones, whose unstable states are uncontrollable or unobservable, but any minimal realization will be stable.)

• **State-space realizations**

For every stable, linear time-invariant state-space system there is ^a causal time-invariant bounded linear operator on $L_2[0,\infty)$.

The corresponding H_{∞} function is rational.

Norms on systems

The abbreviation LTI stands for *linear, time-invariant*. We now have two norms on stable LTI systems $G: L_2[0, \infty) \to L_2[0, \infty)$.

 $\bullet~$ Since H_{∞} is a Banach space, we have the norm

$$
\|G\|_{\infty} = \operatorname*{ess\,sup}_{\omega\in\mathbb{R}}\overline{\sigma}(\hat{G}(j\omega))
$$

• The induced norm on $L_2[0,\infty)$

$$
||G|| = \sup_{\substack{u \in L_2[0,\infty) \\ u \neq 0}} \frac{||Gu||}{||u||}
$$

Theorem

These two norms are equal.

Theorem

The H_{∞} norm is equal to the induced $L_2[0,\infty)$ norm.

$$
\sup_{\omega \in \mathbb{R}} \|\hat{G}(j\omega)\| = \sup_{\omega \in \mathbb{R}} \overline{\sigma}(\hat{G}(j\omega)) = \|\hat{G}\|_{\infty} = \|G\| = \sup_{\substack{u \in L_2[0,\infty) \\ u \neq 0}} \frac{\|Gu\|}{\|u\|}
$$

 $\textbf{Proof:} \ \ \text{First, we prove} \ \Vert G \Vert \leq \Vert \hat{G} \Vert$ \parallel_{∞} . Suppose $y=Gu.$ Then, taking Laplace transforms, $\hat{y}, \hat{u} \in H_2$, and $\hat{y}(j\omega) = \hat{G}(j\omega)\hat{u}(j\omega)$. Since the Laplace transform is isometric,

$$
||y||^2 = ||\hat{y}||^2 = \frac{1}{2\pi} \int_{-\infty}^{\infty} ||\hat{y}(j\omega)||^2 d\omega
$$

=
$$
\frac{1}{2\pi} \int_{-\infty}^{\infty} ||\hat{G}(j\omega)\hat{u}(j\omega)||^2 d\omega
$$

$$
\leq \frac{1}{2\pi} ||\hat{G}(j\omega)||^2_{\infty} \int_{-\infty}^{\infty} ||\hat{u}(j\omega)||^2 d\omega
$$

=
$$
||\hat{G}(j\omega)||^2_{\infty} ||\hat{u}||^2
$$

=
$$
||\hat{G}(j\omega)||^2_{\infty} ||u||^2
$$

Proof continued

Now we prove that $\|G\|\geq \|\hat{G}\|$ $\|_{\infty}$.

Given $\varepsilon > 0$, we need to construct a signal $u \in L_2[0,\infty)$ such that

$$
||y||_2 \ge (||\hat{G}||_{\infty} - \varepsilon)||u||_2
$$

Since \hat{G} $\in H_\infty$ and $H_\infty \subset L_\infty$, we have $\hat G$ $\in L_{\infty}$. Then \hat{G} defines ^a causal LTI operator on $L_2(-\infty,\infty)$. Taking Fourier transforms, this is defined by multiplication

$$
\hat{y}(j\omega) = \hat{G}(j\omega)\hat{u}(j\omega)
$$

where $\hat{y}, \hat{u} \in L_2(j\mathbb{R})$.

Choose a function \hat{u} which has a narrow peak such that

$$
\|\hat{y}\|^2 = \frac{1}{2\pi} \int_{-\infty}^{\infty} \|\hat{G}(j\omega)\hat{u}(j\omega)\|^2 d\omega \ge (\|\hat{G}\|_{\infty} - \varepsilon)^2 \|\hat{u}\|^2
$$

Now $\hat{u} = \Phi u$, the Fourier transform of $u \in L_2(-\infty, \infty)$. Therefore $u(t) \to 0$ as $t \to \infty$, and we can truncate it at a sufficiently negative time $\tau \ll 0$ and it will still satisfy the above inequality. Set u_2 equal to this truncation, $u_2 = (I - P_\tau)u$, and let $u_3 = S_\tau u_2$, which is the same signal shifted forward so that $u_3 \in L_2[0, \infty)$. Then u_3 also satisfies the inequality, and $Gu_3 \in L_2[0,\infty)$.

Bode Plots

$$
\hat{G}(s) = \begin{bmatrix} \frac{10(s+1)}{s^2 + 0.2s + 100} & \frac{1}{s+1} \\ \frac{s+2}{s^2 + 0.1s + 10} & \frac{5(s+1)}{(s+2)(s+3)} \end{bmatrix}
$$

 $||G|| = 50.25$

The induced-norm

- $\bullet~~\|G\|$ is called the *induced-norm* or the *H-infinity* norm of $G.$
- $\bullet\;$ If G is stable, then \hat{G} $\mathcal{C} \in H_\infty$, so $\|G\|$ is finite, and

$$
\|\hat{G}\|_{\infty} = \sup_{s \in \bar{\mathbb{C}}^{+}} \overline{\sigma}(\hat{G}(s)) = \sup_{\omega \in \mathbb{R}} \overline{\sigma}(\hat{G}(j\omega))
$$

 $\bullet\;$ If G is unstable, then the induced-norm $\|G\|$ is not finite, and

sup $s\!\!\in\!\!\bar{\mathbb{C}}^+\!$ $\overline{\sigma}(\hat{G}% _{F}^{\dag},\hat{G}_{F}^{\dag},\hat{G}_{F}^{\dag})$ $(s))$

is not finite.

Caveat

If G is unstable, then

$$
\sup_{\omega \in \mathbb{R}} \overline{\sigma}(\hat{G}(j\omega)) = \sup_{\omega \in \mathbb{R}} \overline{\sigma}(C(j\omega I - A)^{-1}B + D)
$$

may be finite. Even if \hat{G} is not analytic in the closed right-half plane and hence \hat{G} $\not\in H_\infty$, we can still have $G \in L_{\infty}(j\mathbb{R})$.

The induced-norm

An important use of the norm is in measuring the difference between two systems.

Example: 2 inputs, 2 output system. Inputs are forces applied to masses 1 and 3, outputs are positions of masses 1 and 2.

 G_1 has $m_i = 1$, $k_i = 1$, $b_i = 0.2$. G_2 has $m_i = 0.95$, $k_i = 1$, $b_i = 0.35$. $||G_1|| = 30.93, ||G_2|| = 16.37, ||G_1 - G_2|| = 16.42.$

Robust control, first approach

Instead of trying to design a control system for G_1 or G_2 , try to design a controller that achieves a specified level of performance for any G such that

 $\|G - G_{\text{nominal}}\| < c$

In other words, design a controller that will work for any G such that

 $G = G_{\text{nominal}} + \Delta$ for some Δ with $\|\Delta\| < c$

This sounds reasonable, but leads to large uncertainty at small values of \hat{G} $(j\omega)$.

Weighted additive uncertainty

Design a controller that achieves a specified level of performance for any G such that

 $G = G_{\text{nominal}} + W\Delta$ for some Δ with $\|\Delta\| < c$

Here W is a transfer function, chosen to be small at frequencies where the model is good, and large elsewhere.

Weighted additive uncertainty

Design a controller that achieves a specified level of performance for any G such that

 $G = G_{\text{nominal}} + W\Delta$ for some Δ with $\|\Delta\| < c$

We are therefore trying to do a control design for a *set of systems*, not just a single system. This particular set is a *ball* in H_{∞} . It is called a *weighted additive uncertainty ball*.

We can also represent this as the above block-diagram, called ^a *linear-fractional transformation*.

Here the system
$$
G = \begin{bmatrix} 0 & I \\ W & G \end{bmatrix}
$$
 is called the generalized plant.

Model reduction

Suppose $G \in H_{\infty}$ has a minimal realization of dimension n. Given $r < n$, we would like to find the $G_{reduced} \in H_{\infty}$ which minimizes

 $\|G - G_{\text{reduced}}\|$

Notes

- This problem has ^a long history. It is known as the *optimal* H[∞] *model reduction problem*.
- $\bullet\;$ Since $G\in H_{\infty}$, this only makes sense for stable systems.
- $\bullet~$ Once we have $G_{\sf reduced}$, we can use it for control design. In particular, we can design a controller robust to the error between G and G_{reduced} . Typically this requires much less computational time than designing for G .