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Engr210a Lecture 8: The projection theorem

e Motivation via controllability
e Orthogonal complements

e The projection theorem

e The image and the kernel

e Projection operators

e Minimum-norm approximation
e Dual approximation

e Controllability
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Controllability

e Suppose we have the state-space system, with z(f) € R",

t(t) = Ax(t) + Bu(t)  x(0) =0
e This defines a map T : L0, t] — R" from input signals u to final state x(t),

t
Ttu:/ e Bu(r) dr
0

e \We know which states are reachable:

image(Y;) = image(|B AB ... A" 'B])
e Questions:

e How would we find an input to drive the system to a particular state £ € R"?
e What is the input of smallest norm that will do so?
e Given &, we will solve

minimize ||
subject to Tu=¢
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Goals of controllability analysis

e Given a desired final state £ € R", we will solve
minimize ]|
subject to Tu=¢

That is, find the smallest input u € L»|0,t] which will drive the state so that z(¢) = £.

e The norm of the minimal norm w,pt gives a measure of how much energy is required
to reach a final state.

e This will give us a quantitative and practical notion of controllability; much more
useful than the rank test.

e This question will turn out to be deeply linked to the problem of model reduction.

Minimum-norm solution

e In general there are many solutions to the equation T,u = &.

e These solutions live in an affine set in Ly|0,T].
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Closed sets

Let S be a subset of a Hilbert space H. Recall that a point x € H is called a closure
point of S if
B(x,e)NS #(foralle >0

where B(z,¢) is the open-ball of radius €.
Theorem:

S is closed — Every convergent sequence {zy,z1,...} C S

converges to a point in S

Proof: Let x = lim ;.

11— 00
= Note that x is a closure point of S, since x; € B(x,¢) for i large enough. Hence x
must be contained in .S if S is closed.
< Suppose S is not closed. We construct a sequence in .S whose limit is not in S.
Let S be the closure of S (the set of closure points.) Pick y € S with iy & S.

Sincey € S
B(y,e) NS # () for all e > 0

so pick i, € B(y,n"') N S for each n > 0.
Clearly this sequence converges to y and y & S.
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The orthogonal complement

Suppose S is a subspace of a Hilbert space H.
SL:{IEH; <a:,y>=0fora|ly€$}
S+ is called the orthogonal complement of S in H. Write x L y if (x,y) = 0.

Notes

e S+ is a subspace of H.

o S C St Proof: if x € S, then o L y for all y € S+, therefore z € S++.

Theorem: S+ is closed.

Proof: Suppose {z,z1,...} C ST is a convergent sequence. We show that the limit
PP At g q

r = lim z;
1—00

is also in S*.

For all y € S, (x;,y) = 0 for all 7. For any continuous function, lim; ., f(x;) = f(x).
In particular the inner-product is continuous, so {(z,y) = 0 for all y € S. Hence z € S*.
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The projection theorem

Suppose H is a Hilbert space, b € H, and M is a closed subspace of H.
minimize |z — b Tl

subject to re M o

\{

M

Theorem

e Existence: There exists a vector T, Which achieves
|ops = bl = inf { [l = b ; = € M}

e Uniqueness: The minimizing vector x,p is unique.

e Orthogonality:
b—xe Mt — x is optimal
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Proof of the projection theorem

Orthogonality:

|Zopt — b|| < ||z — ]| for all z € M = (,b— xopt) =0 forall z € M

= Suppose to the contrary that there exists x € M such that (x,b — z5,) = ¢, and
c # 0. Without loss of generality, assume ||z|| = 1.

Let y = @opt + cx. Then

ly —blI* =

b — Topt — x|
b — Topt||* + (b — Topt, —CT) + (—cw, b — Topt) + {c, cT)

b — ng0ptH2 - ‘C|2

Hence if b — qpt is not orthogonal to M, then gy is not minimizing.

< Foranyx e M

Ib = 2* = lIb — Zopt + Topt — @[I” = [Ib = Tope|” + l|opt — x|

Hence ||b — || > ||b — @opt|| if & # Topt, hence xop: is minimizing.

This also shows uniqueness.
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Proof of the projection theorem
Existence:

e Suppose b & M, otherwise the optimal = is x,pt = b and we are done.

o Letézinf{Hx—bH X € M} We wish to find x € M with ||z — b|| = ¢.

o lLet {xg,z1,...} be a sequence such that ||x; — b|| — J as i — o0.
We will show that lim x; € M.
11— 00

e First we show this sequence is Cauchy. Recall the parallelogram law
o+ ylI* + [z — ylI* = 2l + 2[ly]”
which implies
I(zj = &) + (b= )| + [[(z; = b) = (b— z)||* = 2[|l2; — bI* + 2|z; — b7
So
loj — wil|* = 2]|2; — bII* + 2[|zi — BII* — (126 — (2 + )]

: 112
— 2|y — bl + 2z — b]]* — 4|p - “”‘5“’9)
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Existence, continued

Recap: § = inf{Ha: — bl ; x € M} We wish to find z € M with ||z — b|| = 0.

. . 2
Weloow [la; — i = 2, — b+ 2l — b — 4]y — L
| | | 3112
M is a subspace implies that (i + ;) € M. Hence Hb — <x@;x]> ‘ > 0.

Hence ||z; — z]|* < 2||x; — b||* + 2||z; — b||* — 46.

|z; — b]| — 0 as i — 00, so we can make ||z; — z;]|* as small as we like by choosing
i and j large enough. Hence {x, z1,...} is a Cauchy sequence.

Recall that every closed subset of a Hilbert space is complete.

M is closed, therefore M is complete, and this Cauchy sequence therefore converges
to a limit in M. That is,

and xopt € M.

|x0pt — bH = 5

Since the norm is continuous,
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Closed subspaces

If S is a closed subspace of a Hilbert space H, then every element x € H has a unique
representation
r=s+1 where s € S and t € S+

Proof

Given z, choose s as the unique minimizer
minimize |s — x|
subject to se S

by the projection theorem, which then implies z — s € S*. Let t = x — s.

Corollary: If S is closed, then S*+ = S.

Proof: We already know S C S*+. We need to show that S*+ C S. That is, if
r € St then z € S.

Applying the above result to z € S+, we have © = s +t, where s € S and t € S+.
Since S C S+, this implies that s € S++.

Since t = x — s, this implies t € S+ also. But ¢t € St also, so ¢ L ¢, that is (¢,t) = 0,
hence t = (0. Hence x € S.
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The image and the kernel of an operator

Suppose U and V are Hilbert spaces, and A : i/ — V is a bounded linear operator. Then
(image(A))™ = ker(A*)

Proof

e First we prove ker(A*) C (image(A))*. Suppose y € ker(A*), and z € image(A).
Then z = Ax for some z, and

(z,y) = (Ax,y)
= (z,A%y) =0

Hence y € (image(A))*.
e Now we prove (image(A))* C ker(A*). Suppose y € (image(A))*; then ,

(y, Ar) =0 forallxz e U
— (A'y,z) =0 forallxz e U
— Ay =0
which implies that y € ker(A*).
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The image and the kernel of an operator

Suppose U and V are Hilbert spaces, and A : i/ — V is a bounded linear operator. Then
(image(A))™ = ker(A*)

Corollary

Applying the above theorem to A* gives
(image(A*))* = ker(A)

Caveat

It is not true in general that
image(A*) = ker(A)*

although this holds for matrices.
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Projection Operators
The operator P on a Hilbert space H is called a projection operator if it is
e idempotent: P* = P | b
e self-adjoint: P* = P H 70

Notes M ]

e M = image(P).

o rc M — x=Px.

Orthogonality
e Foranyx € M and b € H,

(b— Pb,z) = ((I — P)b, x)
= ((I — P)b, Px)
= ((P—P*)b,z) =0

o [Pl <1, since [|b]|* = |lb— Pb+ Pb|* = [|b— Pb[* + || Pb]|* > || Pb||*
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Projection theorem revisited

Suppose b € H. Then
16— z|| > ||b— Pb|| forall z € S
That is, z = Pb is a minimizing solution to

min ||b — z||
zeM

Proof: Since z € S, we have
1b—2||* =1||b — Pb+ Pb—z||* = ||b— Pb||* + || Pb — z|*

This is just the same proof we used for the sufficiency of orthogonality in the projection
theorem.
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Finite-dimensional subspaces

Suppose M = span {yl, Yo, . .. ,yn} where the y; are orthonormal.
The linear map P : H — H defined by

n

Pr = Z@u@yz

1=1

IS a projection operator.

Exercise

o Verify P> = P and P* = P.
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A finite dimensional subspace of a Hilbert space is closed

Suppose M is a subspace of a Hilbert space H, defined by

M = Spall {y17 Y2, .- 7yn}
Then M is closed.

Proof

Without loss of generality assume {yl, Yo, . . . ,yn} is an orthonormal set; if the 1, are not
orthonormal, we can replace them with an orthonormal set without changing M via the
Gram-Schmidt procedure.

We need to show that if {x, x1,...} is a convergent sequence in M, then its limit is also
in M. Let x = lim z;. Then
Jj—00
| — Pz|| < ||z —x;]|  forallj

But we know
lim ||z — z;|| =0
— 0

hence ||x — Px|| = 0 and therefore = Pz, which is an element of M.
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Affine projection theorem

Suppose we would like to solve
minimize Y|
subject to y=v—>0
veM

That is, we are looking for the minimum norm element of the affine set

{ye H; y=v—>forsomev € M}

Subspace form

Substituting y = x — b leads to the equivalent problem
minimize |z — 0|
subject to re M

The optimality conditions, zopt € M and Tope — b € M+ become

Yopt € M+
yopt+b E M
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Minimum-norm approximation

Suppose A : U — V' is a map between Hilbert spaces.
minimize | Ay — b||
subject to yelU

In finite dimensions with the Euclidean norm, this is a least-square-error problem.

Subspace form

Substituting x = Ay leads to the equivalent problem
minimize |z — b

subject to  x € image(A)

Note

e Note that to apply the projection theorem, we need the subspace image(A) to be
closed.
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Minimum-norm approximation

y solves x solves
x = Ay
minimize | Ay — b|| — minimize |z — b
subject to yeUu subject to r € image(A)

e Suppose A:U — V, and image(A) is closed.
e The projection theorem then implies that x,: is the unique solution to the equations
Topt € image(A) feasibility

Topt — b € image(A)* optimality

e Substituting x = Ay implies
Yopt IS Optimal = Ayopt — b € (image(A))*
There may be many such yqpt, even though qp: is unique.

e We know ker(A*) = image(A)*. Hence

Yopt IS Optimal <= A*Ayopt — A%
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The dual approximation problem

Suppose A : U — V' is a map between Hilbert spaces.

minimize ||
subject to Ay=1>
yelU

Subspace form

Substituting y = x — c leads to the equivalent problem

minimize |z — ¢
subject to  x € ker(A)

where ¢ is any vector such that Ac = —b.

Note

e Note that to apply the projection theorem, we need the subspace ker(A) to be closed.
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The dual approximation problem

y solves x solves
Ac=—b
minimize |yl T =yt minimize |z — ||
subject to Ay=1> = subject to x € ker(A)

e Suppose A: U — V and image(A*) is closed.

e We know ker(A) = image(A*)+, hence ker(A) is closed. Also
ker(A)* = image(A*)*+
= image(A”")

e The projection theorem then implies that xp is the unique solution to
Topt € ker(A)
Topt — C € (ker(A))*
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The dual approximation problem, continued

y solves x solves
c=—b
minimize |yl T =yt minimize |z — ||
subject to Ay=1> = subject to x € ker(A)

e The projection theorem implies that x, is the unique solution to
Topt € ker(A)
Topt — C € (ker(A))*

e We saw ker(A)* = image(A*), and substituting = y + ¢ implies

Yopt = A*2 for some z € V

Yopt 1S Optimal >
P Ayopt =b

e This is equivalent to
Yopt = A*Z

is optimal <—
Hopt P for some z € V such that AA"z =
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Kernels

Suppose A : U — V is a bounded linear operator on Hilbert spaces ¢/, ). Then

ker M™* = ker M M™
Proof
e Clearly ker(M*) C ker(M M™).

e We need to show ker(M M™*) C ker(M™).
Suppose M M*x = 0. Then

(x, MM*x) =0
— (M*2x, M*x) =0
— M*x =

Corollary

Suppose M : U — R" is a bounded linear operator. Then

image(M) = R" — M M* is invertible.

Proof: ker(MM*) = ker(M*) = image(M)*+ = {0}.

2001.10.24.01



8 - 24  The projection theorem 2001.10.24.01

Controllability
e Suppose we have the stable state-space system

#(t) = Ax(t) + Bu(t)

e The controllability operator is the map VU, : Ly(—00,0] — R"™ from input signals u
to final state 2(0) given by

0
\Ilcu:/ A7) Bu(r) dr

e Given &, we wish to solve
minimize ||
subject to Vo =¢&
Theorem

Suppose (A, B) is controllable. Then

e the matrix X. = V.U is nonsingular.

e The optimal ugp: is given by
Uopt = VX g
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Theorem

Suppose (A, B) is controllable. Then

e the matrix X. = V.U is nonsingular.

e The optimal ugp: is given by
uopt = \IJZXc_l.fCQ

Proof

e All we need to show is that image(WV?}) is closed, then apply the projection theorem
to the minimum-norm approximation problem.

o VX R" — Ly(—00,0]. For z € R", we have

Vo =V (rie1 + -+ + xnep)
=xVeer + - +a,V.0€,

hence image(V?) = Span{\Ifcel, . ,\Ilcen}, which is finite dimensional, hence it it
closed.

e Since (A, B) is controllable, image(V,.) = R", hence X, = V.U is nonsingular.



