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Engr210a Lecture 8: The projection theorem

• Motivation via controllability

• Orthogonal complements

• The projection theorem

• The image and the kernel

• Projection operators

• Minimum-norm approximation

• Dual approximation

• Controllability
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Controllability

• Suppose we have the state-space system, with x(t) ∈ R
n,

ẋ(t) = Ax(t) + Bu(t) x(0) = 0

• This defines a map Υt : L2[0, t] → R
n from input signals u to final state x(t),

Υtu =

∫ t

0

eA(t−τ)Bu(τ ) dτ

• We know which states are reachable:

image(Υt) = image(
[
B AB . . . An−1B

]
)

• Questions:

• How would we find an input to drive the system to a particular state ξ ∈ R
n?

• What is the input of smallest norm that will do so?

• Given ξ, we will solve

minimize ‖u‖
subject to Υtu = ξ
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Goals of controllability analysis

• Given a desired final state ξ ∈ R
n, we will solve

minimize ‖u‖
subject to Υtu = ξ

That is, find the smallest input u ∈ L2[0, t] which will drive the state so that x(t) = ξ.

• The norm of the minimal norm uopt gives a measure of how much energy is required
to reach a final state.

• This will give us a quantitative and practical notion of controllability; much more
useful than the rank test.

• This question will turn out to be deeply linked to the problem of model reduction.

Minimum-norm solution

• In general there are many solutions to the equation Υtu = ξ.

• These solutions live in an affine set in L2[0, T ].
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Closed sets

Let S be a subset of a Hilbert space H. Recall that a point x ∈ H is called a closure
point of S if

B(x, ε) ∩ S �= ∅ for all ε > 0

where B(x, ε) is the open-ball of radius ε.

Theorem:

S is closed ⇐⇒ Every convergent sequence {x0, x1, . . . } ⊂ S

converges to a point in S

Proof: Let x = lim
i→∞

xi.

⇒ Note that x is a closure point of S, since xi ∈ B(x, ε) for i large enough. Hence x
must be contained in S if S is closed.

⇐ Suppose S is not closed. We construct a sequence in S whose limit is not in S.

Let S̄ be the closure of S (the set of closure points.) Pick y ∈ S̄ with y �∈ S.

Since y ∈ S̄
B(y, ε) ∩ S �= ∅ for all ε > 0

so pick yn ∈ B(y, n−1) ∩ S for each n > 0.

Clearly this sequence converges to y and y �∈ S.
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The orthogonal complement

Suppose S is a subspace of a Hilbert space H.

S⊥ =
{

x ∈ H ; 〈x, y〉 = 0 for all y ∈ S
}

S⊥ is called the orthogonal complement of S in H. Write x ⊥ y if 〈x, y〉 = 0.

Notes

• S⊥ is a subspace of H.

• S ⊂ S⊥⊥. Proof: if x ∈ S, then x ⊥ y for all y ∈ S⊥, therefore x ∈ S⊥⊥.

Theorem: S⊥ is closed.

Proof: Suppose {x0, x1, . . . } ⊂ S⊥ is a convergent sequence. We show that the limit

x = lim
i→∞

xi

is also in S⊥.

For all y ∈ S, 〈xi, y〉 = 0 for all i. For any continuous function, limi→∞ f(xi) = f(x).
In particular the inner-product is continuous, so 〈x, y〉 = 0 for all y ∈ S. Hence x ∈ S⊥.
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The projection theorem

Suppose H is a Hilbert space, b ∈ H, and M is a closed subspace of H.

minimize ‖x − b‖
H

b

x0

M

subject to x ∈ M

Theorem

• Existence: There exists a vector xopt which achieves

‖xopt − b‖ = inf
{
‖x − b‖ ; x ∈ M

}

• Uniqueness: The minimizing vector xopt is unique.

• Orthogonality:
b − x ∈ M⊥ ⇐⇒ x is optimal
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Proof of the projection theorem

Orthogonality:

‖xopt − b‖ ≤ ‖x − b‖ for all x ∈ M ⇐⇒ 〈x, b − xopt〉 = 0 for all x ∈ M

⇒ Suppose to the contrary that there exists x ∈ M such that 〈x, b − xopt〉 = c, and
c �= 0. Without loss of generality, assume ‖x‖ = 1.

Let y = xopt + cx. Then

‖y − b‖2 = ‖b − xopt − cx‖2

= ‖b − xopt‖2 + 〈b − xopt,−cx〉 + 〈−cx, b − xopt〉 + 〈cx, cx〉
= ‖b − xopt‖2 − |c|2

Hence if b − xopt is not orthogonal to M , then xopt is not minimizing.

⇐ For any x ∈ M

‖b − x‖2 = ‖b − xopt + xopt − x‖2 = ‖b − xopt‖2 + ‖xopt − x‖2

Hence ‖b − x‖ > ‖b − xopt‖ if x �= xopt, hence xopt is minimizing.

This also shows uniqueness.
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Proof of the projection theorem

Existence:

• Suppose b �∈ M , otherwise the optimal x is xopt = b and we are done.

• Let δ = inf
{
‖x − b‖ ; x ∈ M

}
. We wish to find x ∈ M with ‖x − b‖ = δ.

• Let {x0, x1, . . . } be a sequence such that ‖xi − b‖ → δ as i → ∞.

We will show that lim
i→∞

xi ∈ M .

• First we show this sequence is Cauchy. Recall the parallelogram law

‖x + y‖2 + ‖x − y‖2 = 2‖x‖2 + 2‖y‖2

which implies

‖(xj − b) + (b − xi)‖2 + ‖(xj − b) − (b − xi)‖2 = 2‖xj − b‖2 + 2‖xi − b‖2

So

‖xj − xi‖2 = 2‖xj − b‖2 + 2‖xi − b‖2 − ‖2b − (xi + xj)‖2

= 2‖xj − b‖2 + 2‖xi − b‖2 − 4
∥∥∥b − (xi + xj)

2

∥∥∥2
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Existence, continued

• Recap: δ = inf
{
‖x − b‖ ; x ∈ M

}
. We wish to find x ∈ M with ‖x − b‖ = δ.

• We know ‖xj − xi‖2 = 2‖xj − b‖2 + 2‖xi − b‖2 − 4
∥∥∥b − (xi + xj)

2

∥∥∥2

• M is a subspace implies that
(xi + xj)

2
∈ M . Hence

∥∥∥b − (xi + xj)

2

∥∥∥2

≥ δ.

• Hence ‖xj − xi‖2 ≤ 2‖xj − b‖2 + 2‖xi − b‖2 − 4δ.

• ‖xi − b‖ → δ as i → ∞, so we can make ‖xj − xi‖2 as small as we like by choosing
i and j large enough. Hence {x0, x1, . . . } is a Cauchy sequence.

• Recall that every closed subset of a Hilbert space is complete.

• M is closed, therefore M is complete, and this Cauchy sequence therefore converges
to a limit in M . That is,

xopt = lim
i→∞

xi

and xopt ∈ M .

• Since the norm is continuous, ‖xopt − b‖ = δ.
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Closed subspaces

If S is a closed subspace of a Hilbert space H, then every element x ∈ H has a unique
representation

x = s + t where s ∈ S and t ∈ S⊥

Proof

Given x, choose s as the unique minimizer

minimize ‖s − x‖
subject to s ∈ S

by the projection theorem, which then implies x − s ∈ S⊥. Let t = x − s.

Corollary: If S is closed, then S⊥⊥ = S.

Proof: We already know S ⊂ S⊥⊥. We need to show that S⊥⊥ ⊂ S. That is, if
x ∈ S⊥⊥ then x ∈ S.

Applying the above result to x ∈ S⊥⊥, we have x = s + t, where s ∈ S and t ∈ S⊥.
Since S ⊂ S⊥⊥, this implies that s ∈ S⊥⊥.

Since t = x − s, this implies t ∈ S⊥⊥ also. But t ∈ S⊥ also, so t ⊥ t, that is 〈t, t〉 = 0,
hence t = 0. Hence x ∈ S.
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The image and the kernel of an operator

Suppose U and V are Hilbert spaces, and A : U → V is a bounded linear operator. Then

(image(A))⊥ = ker(A∗)

Proof

• First we prove ker(A∗) ⊂ (image(A))⊥. Suppose y ∈ ker(A∗), and z ∈ image(A).
Then z = Ax for some x, and

〈z, y〉 = 〈Ax, y〉
= 〈x, A∗y〉 = 0

Hence y ∈ (image(A))⊥.

• Now we prove (image(A))⊥ ⊂ ker(A∗). Suppose y ∈ (image(A))⊥; then ,

〈y, Ax〉 = 0 for all x ∈ U
=⇒ 〈A∗y, x〉 = 0 for all x ∈ U
=⇒ A∗y = 0

which implies that y ∈ ker(A∗).
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The image and the kernel of an operator

Suppose U and V are Hilbert spaces, and A : U → V is a bounded linear operator. Then

(image(A))⊥ = ker(A∗)

Corollary

Applying the above theorem to A∗ gives

(image(A∗))⊥ = ker(A)

Caveat

It is not true in general that
image(A∗) = ker(A)⊥

although this holds for matrices.
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Projection Operators

The operator P on a Hilbert space H is called a projection operator if it is

• idempotent: P 2 = P

H

b

x0

M

• self-adjoint: P ∗ = P

Notes

• M = image(P ).

• x ∈ M =⇒ x = Px.

Orthogonality

• For any x ∈ M and b ∈ H,

〈b − Pb, x〉 = 〈(I − P )b, x〉
= 〈(I − P )b, Px〉
= 〈(P − P 2)b, x〉 = 0

• ‖P‖ ≤ 1, since ‖b‖2 = ‖b − Pb + Pb‖2 = ‖b − Pb‖2 + ‖Pb‖2 ≥ ‖Pb‖2
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Projection theorem revisited

Suppose b ∈ H. Then

‖b − x‖ ≥ ‖b − Pb‖ for all x ∈ S

That is, z = Pb is a minimizing solution to

min
z∈M

‖b − z‖

Proof: Since z ∈ S, we have

‖b − x‖2 = ‖b − Pb + Pb − x‖2 = ‖b − Pb‖2 + ‖Pb − x‖2

This is just the same proof we used for the sufficiency of orthogonality in the projection
theorem.
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Finite-dimensional subspaces

Suppose M = span
{
y1, y2, . . . , yn

}
where the yi are orthonormal.

The linear map P : H → H defined by

Px =

n∑
i=1

〈yi, x〉yi.

is a projection operator.

Exercise

• Verify P 2 = P and P ∗ = P .
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A finite dimensional subspace of a Hilbert space is closed

Suppose M is a subspace of a Hilbert space H, defined by

M = span
{
y1, y2, . . . , yn

}
Then M is closed.

Proof

Without loss of generality assume
{
y1, y2, . . . , yn

}
is an orthonormal set; if the yi are not

orthonormal, we can replace them with an orthonormal set without changing M via the
Gram-Schmidt procedure.

We need to show that if {x0, x1, . . . } is a convergent sequence in M , then its limit is also
in M . Let x = lim

j→∞
xj. Then

‖x − Px‖ ≤ ‖x − xj‖ for all j

But we know
lim
j→∞

‖x − xj‖ = 0

hence ‖x − Px‖ = 0 and therefore x = Px, which is an element of M .
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Affine projection theorem

Suppose we would like to solve

minimize ‖y‖
H

y0

M

−bsubject to y = v − b

v ∈ M

That is, we are looking for the minimum norm element of the affine set

{y ∈ H ; y = v − b for some v ∈ M}

Subspace form

Substituting y = x − b leads to the equivalent problem

minimize ‖x − b‖
subject to x ∈ M

The optimality conditions, xopt ∈ M and xopt − b ∈ M⊥ become

yopt ∈ M⊥

yopt + b ∈ M
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Minimum-norm approximation

Suppose A : U → V is a map between Hilbert spaces.

minimize ‖Ay − b‖
subject to y ∈ U

In finite dimensions with the Euclidean norm, this is a least-square-error problem.

Subspace form

Substituting x = Ay leads to the equivalent problem

minimize ‖x − b‖
subject to x ∈ image(A)

Note

• Note that to apply the projection theorem, we need the subspace image(A) to be
closed.



y solves

minimize ‖Ay − b‖
subject to y ∈ U

x solves

minimize ‖x − b‖
subject to x ∈ image(A)
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Minimum-norm approximation

x = Ay
⇐⇒

• Suppose A : U → V , and image(A) is closed.

• The projection theorem then implies that xopt is the unique solution to the equations

xopt ∈ image(A) feasibility

xopt − b ∈ image(A)⊥ optimality

• Substituting x = Ay implies

yopt is optimal ⇐⇒ Ayopt − b ∈ (image(A))⊥

There may be many such yopt, even though xopt is unique.

• We know ker(A∗) = image(A)⊥. Hence

yopt is optimal ⇐⇒ A∗Ayopt = A∗b
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The dual approximation problem

Suppose A : U → V is a map between Hilbert spaces.

minimize ‖y‖
subject to Ay = b

y ∈ U

Subspace form

Substituting y = x − c leads to the equivalent problem

minimize ‖x − c‖
subject to x ∈ ker(A)

where c is any vector such that Ac = −b.

Note

• Note that to apply the projection theorem, we need the subspace ker(A) to be closed.



y solves

minimize ‖y‖
subject to Ay = b

x solves

minimize ‖x − c‖
subject to x ∈ ker(A)
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The dual approximation problem

Ac = −b
x = y + c

⇐⇒

• Suppose A : U → V and image(A∗) is closed.

• We know ker(A) = image(A∗)⊥, hence ker(A) is closed. Also

ker(A)⊥ = image(A∗)⊥⊥

= image(A∗)

• The projection theorem then implies that xopt is the unique solution to

xopt ∈ ker(A)

xopt − c ∈ (ker(A))⊥



y solves

minimize ‖y‖
subject to Ay = b

x solves

minimize ‖x − c‖
subject to x ∈ ker(A)
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The dual approximation problem, continued

Ac = −b
x = y + c

⇐⇒

• The projection theorem implies that xopt is the unique solution to

xopt ∈ ker(A)

xopt − c ∈ (ker(A))⊥

• We saw ker(A)⊥ = image(A∗), and substituting x = y + c implies

yopt is optimal ⇐⇒ yopt = A∗z for some z ∈ V

Ayopt = b

• This is equivalent to

yopt is optimal ⇐⇒ yopt = A∗z
for some z ∈ V such that AA∗z = b
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Kernels

Suppose A : U → V is a bounded linear operator on Hilbert spaces U ,V . Then

ker M∗ = ker MM ∗

Proof

• Clearly ker(M∗) ⊂ ker(MM ∗).

• We need to show ker(MM ∗) ⊂ ker(M∗).

Suppose MM ∗x = 0. Then

〈x,MM ∗x〉 = 0

=⇒ 〈M∗x,M ∗x〉 = 0

=⇒ M∗x = 0

Corollary

Suppose M : U → R
n is a bounded linear operator. Then

image(M) = R
n =⇒ MM ∗ is invertible.

Proof: ker(MM ∗) = ker(M∗) = image(M)⊥ = {0}.
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Controllability

• Suppose we have the stable state-space system

ẋ(t) = Ax(t) + Bu(t)

• The controllability operator is the map Ψc : L2(−∞, 0] → R
n from input signals u

to final state x(0) given by

Ψcu =

∫ 0

−∞
eA(t−τ)Bu(τ ) dτ

• Given ξ, we wish to solve

minimize ‖u‖
subject to Ψcu = ξ

Theorem

Suppose (A, B) is controllable. Then

• the matrix Xc = ΨcΨ
∗
c is nonsingular.

• The optimal uopt is given by
uopt = Ψ∗

cX
−1
c x0
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Theorem

Suppose (A, B) is controllable. Then

• the matrix Xc = ΨcΨ
∗
c is nonsingular.

• The optimal uopt is given by
uopt = Ψ∗

cX
−1
c x0

Proof

• All we need to show is that image(Ψ∗
c) is closed, then apply the projection theorem

to the minimum-norm approximation problem.

• Ψ∗
c : R

n → L2(−∞, 0]. For x ∈ R
n, we have

Ψcx = Ψc(x1e1 + · · · + xnen)

= x1Ψce1 + · · · + xnΨcen

hence image(Ψ∗
c) = span

{
Ψce1, . . . , Ψcen

}
, which is finite dimensional, hence it it

closed.

• Since (A, B) is controllable, image(Ψc) = R
n, hence Xc = ΨcΨ

∗
c is nonsingular.


