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Engr210a Lecture 9: Controllability and Observability
e Ellipsoids
e The controllability gramian
e |yapunov equations
e [he observability gramian
e Controllability and observability ellipsoids

e Lyapunov stability
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Ellipsoids

E:{xER”; o7 e < 1}

Notes
o JcRYV" 7 =7 7>0.
e semiaxis lengths: v/)\;, where ); are eigenvalues of Z

e semiaxis directions: eigenvectors of
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Alternate representation of ellipsoids

Suppose U is a Hilbert space, M : U — R", and image(M) = R". Define Z = M M*.
Then the following sets are the same ellipsoid.

o Elz{xER”; o7 tx < 1}

o By={Z:yeR" |yl <1} ‘

o Bs={Mu; uel,lul <1}

Proof
o Clearly E1 = Ey; set y = 7 3z,
e We show F3 C E;. Suppose = € Ej3, so x = Mu for some u with ||u|| < 1. Then
v 7w = (u, M*Z 7" Mu) = (u, M*(MM*)""Mu)

Now notice that P = M*(MM*)~*M is a projection operator, that is P? = P and
P* = P. Hence ||P|| <1, and

v* 7w = (u, Pu) = (Pu, Pu) = |[|[Pul]* < |Jul]* <1

so r € F.
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Alternate representation of ellipsoids, continued

Suppose U is a Hilbert space, M : U — R", and image(M) = R". Define Z = M M*.
Then the following sets are the same ellipsoid.

o F1 = {:CE]R”' *Z_1x<1}

o [H)= {Z?y y € R", H:UHQ < 1} ,

o Bs={Mu; uel,lul <1}

Proof continued

o Conversely, we show E; C E5. Suppose x € E}, so *Z 12 < 1. Let
u= MMM
Then
Mu= MM MM 'z =x
and
u|* = (u,u) == (x, (MM "MM* (MM '2) =2*Z'2 <1
so r € Ej.

o Aside: image(P) = (ker(M))* for the projection P = M*(MM*)~1 M.
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Controllability and ellipsoids
The set of states reachable with an input u € Ly(—o0, 0] with norm ||u|| < 1is
Eo={Wu; Jul <1}
={¢eR"; X<}

Notes

e The matrix X, = V.V is called the controllability gramian.

e semiaxis lengths: 1/)\;, where ); are eigenvalues of X,

e semiaxis directions v; are eigenvectors of X,
Interpretation

e Directions v; corresponding to large A; are strongly controllable.
e Directions v; corresponding to small \; are weakly controllable.
e The energy required to drive the final state to x € R" is
utopt | = (VEX ", WEX )
— (X 1z, 2) =" X 2
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Computing the adjoint operator

The controllability operator V.. : Ly(—oc,0] — R" is defined by
0
Vo = / e "Bu(r)dr  foru € Ly(—00, 0]

The adjoint

By definition, U* : R" — Ly(—o00, 0] is the unique operator that satisfies
(W, u) = (x, V.u) for all u € Ly(—00,0] and x € R"

0
::1:*/ e " Bu(r)dr

_ / : (B *72) ulr) dr

Hence U is defined by
(U*z)(t) = Be Vi

2001.10.30.01
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Computing the controllability gramian

2001.10.30.01

Suppose A is Hurwitz. The controllability gramian X. € R"*" defined by X, = W U7 is

given by
X, :/ e BB T dr
0
Proof
We have .
Vo = / e Y Bu(r)dr (Urz)(t) = Be 4z
for all u € Ly(—00,0] and x € R". Hence
0
X =00z = / e "BB*e A Txdr  forall z € R”

which implies

0
XC:/ e Y"BB*e AT dr

—00
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Computing the controllability gramian

Suppose A is Hurwitz. The controllability gramian X, € R"*" is the unique solution to
the linear equation

AX, + X A"+ BB =0

This equation is called a Lyapunov equation.

Notes

e This is a linear equation, hence it is easily solvable. We can just rewrite it in the form

Pr=q

n(ntl) - :
where x € R™ 2 is a vector whose components are the n(n + 1)/2 distinct entries

of X.
e The matrix X, > 0, since it is given by X, = W U~

e If (A, B) is controllable, then X, > 0, from our previous result that
ker(W?) = ker(W V7))
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Lyapunov equations

Suppose A and () are square matrices, and A is Hurwitz. Then
oo
X = / eAthA*t dt
0
is the unique solution to the Lyapunov equation
AX 4+ XA +Q =0
Proof

e Note that the integral converges, since A is Hurwitz implies ¢! decays exponentially.

% (eAthA*t) _ A (eAthA*t) n (6AtQ€A*t) A
d

= / %(eAthA*t) dt = A / e Qe dt + / e Qe dt A
0 0

0

o Uniqueness: This equation defines a linear map I1 : R” — R"™, where [NX)=-0Q.
Then image(Il) = R™ implies ker(IT) = {0}.
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Summary of controllability

o If A is Hurwitz, the controllability gramian
X, = /OO e "BB N dr
0
is a real, symmetric matrix, and X, > 0
o X =WU.U%
e We can compute X_; it is the unique solution to AX,. + X A"+ BB* = 0.

e The eigenvalues of X, provide information on how controllable the system is. If any
A; = 0, the system is not controllable.

Singular value interpretation

e The eigenvalues of W U’ are the squares of the singular values of W..

e This fits with our standard notion of rank; instead of looking at rank(C45) to deter-
mine image(W,.), look at the singular values of V..
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Finite-time controllability

e (Consider the state-space system

t(t) = Ax(t) + Bu(t)  x(0) =0
e The same approach works on the finite-time interval, with
z(t) = Tyu = /Ot A7) Bu(r) dr
e The finite-time controllability gramian is
X, = /t e BB A T dr
0

o X; > X.ift>s. Hence
X e <X 'z ift>s

That is, it takes less energy to reach a state x over a longer time.
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Example

ml

m2

Equations of motion (t) = Ax(t) + Bul(t)
00 0 1 0
O 0 0 0 1
v O 0 0 0 0
A=191 0 —16 08

I =2 1 08 —1.6
0O I —1 0 0.8

SO = OO

0.8
—0.8

m3

we]
|

OO = OO O

2001.10.30.01

Input u is a force applied to the first mass. States x;, x9, x3 are displacements,

states x4, T5, T are velocities.

Desired state is £ = [1 2300 O}T, in 9.5 seconds.
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Example
k1 k2
NN | VAV AN AN
m
] ]
bl b2
: : . Yk yv—1
Optimal input: uep = 17X, €.
Optimal system input
8 ‘ ‘ ‘ 4
4+ ,
6 i
_8 | | | | | | | | | _3
0 1 2 3 4 5 6 7 8 9 10

time

m2

m3

System output when driven by optimal input

2001.10.30.01

time
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Observability

e Suppose we have a stable state-space system

t(t) = Ax(t) + Bu(t)  with initial condition x(0) = x

y(t) = Cx(t) + Du(t)

t
e The solution is y(t) = Ce 'z + C/ A7) Bu(r) dr + Dul(t)
0

e This defines a map ¥, : R" — [5[0,00) by

Yy = \IjoxO + Aou

e \We know which states are unobservable:

ker(W,) = ker

C
C'A
C A?

cant

2001.10.30.01

e How observable is a particular state? Given x € R", we will compute ||V, z||.



9 - 15 Controllability and Observability 2001.10.30.01
More ellipsoids

Suppose U is a Hilbert space, M : R" — U, and ker(M) = {0}. Define Y = M*M.
Then the following sets are the same ellipsoid

o O = {ZCERn' *ngl} '

e Oy={zeR" ; |[Mz| <1}

Notes

e semiaxis lengths: \F’ where \; are eigenvalues of Y
e semiaxis directions: eigenvectors of Y

e The directions of the axes of this ellipsoid are the same as those of
{:1: cR": 'Y lz < 1}

but the magnitudes are inverted.



9-16 Controllability and Observability 2001.10.30.01

Observability

e Given x € R", we have

|V, 2| = (Vx, Uox)
= (z, VW, x)

= 2Y.x
where Y, = W W,. The matrix Y, is called the observability gramian.

e The set of initial states which result in an output y with norm ||y|| < 1 is given by
the ellipsoid

E,={zeR" ; [|[Vz| <1}
:{xER"; :C*Yoxgl}
Note that the major axis corresponds to weakly observable states.
Caveat
e Some authors plot the ellipsoid
{:1: cR": 'Y lz < 1}

so that the major axes correspond to strongly observable states.
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Summary of observability

e Results parallel those of controllability.
o Y, = U, is the observability gramian.

o If Ais Hurwitz, computation of the adjoint gives
o0 *
Y, = / e TCFCeN dr
0
which is real, symmetric, and Y, > 0.
e We can compute Y,; it is the unique solution to

AY, +Y,A+C"C =0

e Compare this with the Lyapunov equation for the controllability gramian

AX, + X A"+ BB =0

e The eigenvalues of Y, provide information on how observable the system is. If any
A; = 0, the system is not observable.

e If (C, A) is observable then Y, > 0.
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Lyapunov theory

Suppose () > 0. Then A is Hurwitz if and only if there exists a positive definite solution
X > 0 to the Lyapunov equation

AX+XA+0Q =0
Notes

e This provides the converse to our earlier results.

Proof

only if: Since A is Hurwitz, we know the unique solution is given by
o
X = / e TQe dr
0

At is invertible for all .

This is positive, since e
if: Suppose X > ( satisfies the Lyapunov equation. Then
0=v"(A"X + XA+ Qv = Nv"Xv+ WwXv+v'Qu
Since v* X v > (0 we have
v QU

2Re(N) = iy < 0
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Lyapunov theory
Suppose we have the system of ordinary differential equations

z(t) = f(x)

where z(t) € R"” and f(0) = 0. Suppose V : R" — R is a continuously differentiable
function such that

(i) V(0)=0

(i) V(x) >0 forx #£0

o d — 9V
(iii) %V(aj) =2 axifz-(a:) < 0 for x # 0.
(iv) If {zg,x1,...} is a sequence such that ||x;|| — oo, then V(z)) — oo.

Then the origin z = 0 is globally asymptotically stable. That is, for any initial condition
lim z(t) =0

t—00
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Lyapunov stability of linear systems

The function V(z) = x*Xx is a Lyapunov function for the linear system z(t) = Ax(t),
since

d

SV (x) = & (0 a(t) + (Y i (1)

o (£)(A*X +XA) ()
—x"(1)Qx(t) <

Notes

e Hence, if X is the controllability gramian, the function V() = 2* X .z is a Lyapunov
function for z(t) = Ax(t).

e Similarly, if Y, is the controllability gramian, the function V(z) = 2*Y,x is a Lyapunov
function for z(t) = A*x(t).

e Corollary: The LMI condition
A is Hurwitz = there exists X > 0 such that A" X + XA <0
e There are many other interpretations for the gramians; e.g. as Lagrange multipliers,

separating hyperplanes, storage functions, solutions to H-J equations, state covariance
for systems driven by white noise, . . .



