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Engr210a Lecture 9: Controllability and Observability

• Ellipsoids

• The controllability gramian

• Lyapunov equations

• The observability gramian

• Controllability and observability ellipsoids

• Lyapunov stability
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Ellipsoids

√
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E =
{
x ∈ R

n ; x∗Z−1x ≤ 1
}

Notes

• Z ∈ R
n×n, Z = ZT , Z > 0.

• semiaxis lengths:
√

λi, where λi are eigenvalues of Z

• semiaxis directions: eigenvectors of Z
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Alternate representation of ellipsoids

Suppose U is a Hilbert space, M : U → R
n, and image(M) = R

n. Define Z = MM ∗.
Then the following sets are the same ellipsoid.

• E1 =
{
x ∈ R

n ; x∗Z−1x ≤ 1
}

• E2 =
{
Z

1
2y ; y ∈ R

n, ‖y‖2 ≤ 1
}

• E3 =
{
Mu ; u ∈ U , ‖u‖2 ≤ 1

}

Proof

• Clearly E1 = E2; set y = Z−1
2x.

• We show E3 ⊂ E1. Suppose x ∈ E3, so x = Mu for some u with ‖u‖ ≤ 1. Then

x∗Z−1x = 〈u, M ∗Z−1Mu〉 = 〈u,M ∗(MM ∗)−1Mu〉
Now notice that P = M∗(MM ∗)−1M is a projection operator, that is P 2 = P and
P ∗ = P . Hence ‖P‖ ≤ 1, and

x∗Z−1x = 〈u, Pu〉 = 〈Pu, Pu〉 = ‖Pu‖2 ≤ ‖u‖2 ≤ 1

so x ∈ E1.
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Alternate representation of ellipsoids, continued

Suppose U is a Hilbert space, M : U → R
n, and image(M) = R

n. Define Z = MM ∗.
Then the following sets are the same ellipsoid.

• E1 =
{
x ∈ R

n ; x∗Z−1x ≤ 1
}

• E2 =
{
Z

1
2y ; y ∈ R

n, ‖y‖2 ≤ 1
}

• E3 =
{
Mu ; u ∈ U , ‖u‖2 ≤ 1

}

Proof continued

• Conversely, we show E1 ⊂ E3. Suppose x ∈ E1, so x∗Z−1x ≤ 1. Let

u = M ∗(MM ∗)−1x

Then
Mu = MM ∗(MM ∗)−1x = x

and
‖u‖2 = 〈u, u〉 == 〈x, (MM ∗)−1MM ∗(MM ∗)−1x〉 = x∗Z−1x ≤ 1

so x ∈ E3.

• Aside: image(P ) = (ker(M))⊥ for the projection P = M∗(MM ∗)−1M .
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Controllability and ellipsoids

The set of states reachable with an input u ∈ L2(−∞, 0] with norm ‖u‖ ≤ 1 is

Ec =
{
Ψcu ; ‖u‖ ≤ 1

}
=

{
ξ ∈ R

n ; ξ∗X−1
c ξ ≤ 1

}

Notes

• The matrix Xc = ΨcΨ
∗
c is called the controllability gramian.

• semiaxis lengths:
√

λi, where λi are eigenvalues of Xc

• semiaxis directions vi are eigenvectors of Xc

Interpretation

• Directions vi corresponding to large λi are strongly controllable.

• Directions vi corresponding to small λi are weakly controllable.

• The energy required to drive the final state to x ∈ R
n is

‖uopt‖ = 〈Ψ∗
cX

−1
c x, Ψ∗

cX
−1
c x〉

= 〈X−1
c x, x〉 = x∗X−1

c x
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Computing the adjoint operator

The controllability operator Ψc : L2(−∞, 0] → R
n is defined by

Ψcu =

∫ 0

−∞
e−AτBu(τ ) dτ for u ∈ L2(−∞, 0]

The adjoint

By definition, Ψ∗
c : R

n → L2(−∞, 0] is the unique operator that satisfies

〈Ψ∗
cx, u〉 = 〈x, Ψcu〉 for all u ∈ L2(−∞, 0] and x ∈ R

n

= x∗
∫ 0

−∞
e−AτBu(τ ) dτ

=

∫ 0

−∞

(
B∗e−A∗τx

)∗
u(τ ) dτ

Hence Ψ∗
c is defined by

(Ψ∗
cx)(t) = B∗e−A∗tx
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Computing the controllability gramian

Suppose A is Hurwitz. The controllability gramian Xc ∈ R
n×n defined by Xc = ΨcΨ

∗
c is

given by

Xc =

∫ ∞

0

eAτBB∗eA∗τ dτ

Proof

We have

Ψcu =

∫ 0

−∞
e−AτBu(τ ) dτ (Ψ∗

cx)(t) = B∗e−A∗tx

for all u ∈ L2(−∞, 0] and x ∈ R
n. Hence

Xcx = ΨcΨ
∗
cx =

∫ 0

−∞
e−AτBB∗e−A∗τx dτ for all x ∈ R

n

which implies

Xc =

∫ 0

−∞
e−AτBB∗e−A∗τ dτ
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Computing the controllability gramian

Suppose A is Hurwitz. The controllability gramian Xc ∈ R
n×n is the unique solution to

the linear equation
AXc + XcA

∗ + BB∗ = 0

This equation is called a Lyapunov equation.

Notes

• This is a linear equation, hence it is easily solvable. We can just rewrite it in the form

Px = q

where x ∈ R
n(n+1)

2 is a vector whose components are the n(n + 1)/2 distinct entries
of X .

• The matrix Xc ≥ 0, since it is given by Xc = ΨcΨ
∗
c .

• If (A, B) is controllable, then Xc > 0, from our previous result that

ker(Ψ∗
c) = ker(ΨcΨ

∗
c)
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Lyapunov equations

Suppose A and Q are square matrices, and A is Hurwitz. Then

X =

∫ ∞

0

eAtQeA∗t dt

is the unique solution to the Lyapunov equation

AX + XA∗ + Q = 0

Proof

• Note that the integral converges, since A is Hurwitz implies eAt decays exponentially.

d

dt

(
eAtQeA∗t

)
= A

(
eAtQeA∗t

)
+

(
eAtQeA∗t

)
A∗

=⇒
∫ ∞

0

d

dt

(
eAtQeA∗t

)
dt = A

∫ ∞

0

eAtQeA∗t dt +

∫ ∞

0

eAtQeA∗t dtA∗

=⇒ −Q = AX + XA∗

• Uniqueness: This equation defines a linear map Π : R
n2 → R

n2
, where Π(X) = −Q.

Then image(Π) = R
n2

implies ker(Π) = {0}.
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Summary of controllability

• If A is Hurwitz, the controllability gramian

Xc =

∫ ∞

0

eAτBB∗eA∗τ dτ

is a real, symmetric matrix, and Xc ≥ 0

• Xc = ΨcΨ
∗
c .

• We can compute Xc; it is the unique solution to AXc + XcA
∗ + BB∗ = 0.

• The eigenvalues of Xc provide information on how controllable the system is. If any
λi = 0, the system is not controllable.

Singular value interpretation

• The eigenvalues of ΨcΨ
∗
c are the squares of the singular values of Ψc.

• This fits with our standard notion of rank; instead of looking at rank(CAB) to deter-
mine image(Ψc), look at the singular values of Ψc.
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Finite-time controllability

• Consider the state-space system

ẋ(t) = Ax(t) + Bu(t) x(0) = 0

• The same approach works on the finite-time interval, with

x(t) = Υtu =

∫ t

0

eA(t−τ)Bu(τ ) dτ

• The finite-time controllability gramian is

Xt =

∫ t

0

eAτBB∗eA∗τ dτ

• Xt ≥ Xs if t ≥ s. Hence

x∗X−1
t x ≤ x∗X−1

s x if t ≥ s

That is, it takes less energy to reach a state x over a longer time.
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Example

m1

k1

b1 b2 b3

k2 k3

m2 m3

• Masses mi = 1, spring constants k = 1, damping constants b = 0.8.

• Equations of motion ẋ(t) = Āx(t) + B̄u(t)

Ā =




0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−2 1 0 −1.6 0.8 0
1 −2 1 0.8 −1.6 0.8
0 1 −1 0 0.8 −0.8




B̄ =




0
0
0
1
0
0




• Input u is a force applied to the first mass. States x1, x2, x3 are displacements,
states x4, x5, x6 are velocities.

• Desired state is ξ =
[
1 2 3 0 0 0

]T
, in 9.5 seconds.
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Example

m1

k1

b1 b2 b3

k2 k3

m2 m3

Optimal input: uopt = Υ∗
tX

−1
t ξ.
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Observability

• Suppose we have a stable state-space system

ẋ(t) = Ax(t) + Bu(t) with initial condition x(0) = x0

y(t) = Cx(t) + Du(t)

• The solution is y(t) = CeAtx0 + C

∫ t

0

eA(t−τ)Bu(τ ) dτ + Du(t)

• This defines a map Ψo : R
n → L2[0,∞) by

y = Ψox0 + Λou

• We know which states are unobservable:

ker(Ψo) = ker




C
CA
CA2

...
CAn−1




• How observable is a particular state? Given x ∈ R
n, we will compute ‖Ψox‖.
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More ellipsoids

Suppose U is a Hilbert space, M : R
n → U , and ker(M) = {0}. Define Y = M∗M .

Then the following sets are the same ellipsoid.

• O1 =
{
x ∈ R

n ; x∗Y x ≤ 1
}

• O2 =
{
x ∈ R

n ; ‖Mx‖ ≤ 1
}

Notes

• semiaxis lengths: 1√
λi

, where λi are eigenvalues of Y

• semiaxis directions: eigenvectors of Y

• The directions of the axes of this ellipsoid are the same as those of{
x ∈ R

n ; x∗Y −1x ≤ 1
}

but the magnitudes are inverted.
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Observability

• Given x ∈ R
n, we have

‖Ψox‖ = 〈Ψox, Ψox〉
= 〈x, Ψ∗

oΨox〉
= x∗Yox

where Yo = Ψ∗
oΨo. The matrix Yo is called the observability gramian.

• The set of initial states which result in an output y with norm ‖y‖ ≤ 1 is given by
the ellipsoid

Eo =
{
x ∈ R

n ; ‖Ψox‖ ≤ 1
}

=
{
x ∈ R

n ; x∗Yox ≤ 1
}

Note that the major axis corresponds to weakly observable states.

Caveat

• Some authors plot the ellipsoid{
x ∈ R

n ; x∗Y −1x ≤ 1
}

so that the major axes correspond to strongly observable states.
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Summary of observability

• Results parallel those of controllability.

• Yo = Ψ∗
oΨo is the observability gramian.

• If A is Hurwitz, computation of the adjoint gives

Yo =

∫ ∞

0

eA∗τC∗CeAτ dτ

which is real, symmetric, and Yo ≥ 0.

• We can compute Yo; it is the unique solution to

A∗Yo + YoA + C∗C = 0

• Compare this with the Lyapunov equation for the controllability gramian

AXc + XcA
∗ + BB∗ = 0

• The eigenvalues of Yo provide information on how observable the system is. If any
λi = 0, the system is not observable.

• If (C,A) is observable then Yo > 0.
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Lyapunov theory

Suppose Q > 0. Then A is Hurwitz if and only if there exists a positive definite solution
X > 0 to the Lyapunov equation

A∗X + XA + Q = 0

Notes

• This provides the converse to our earlier results.

Proof

only if: Since A is Hurwitz, we know the unique solution is given by

X =

∫ ∞

0

eA∗τQeAτ dτ

This is positive, since eAt is invertible for all t.

if: Suppose X > 0 satisfies the Lyapunov equation. Then

0 = v∗(A∗X + XA + Q)v = λ∗v∗Xv + λv∗Xv + v∗Qv

Since v∗Xv > 0 we have

2 Re(λ) = −v∗Qv

v∗Xv
< 0
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Lyapunov theory

Suppose we have the system of ordinary differential equations

ẋ(t) = f(x)

where x(t) ∈ R
n and f(0) = 0. Suppose V : R

n → R is a continuously differentiable
function such that

(i) V (0) = 0

(ii) V (x) > 0 for x �= 0

(iii)
d

dt
V (x) =

n∑
i=1

∂V

∂xi
fi(x) < 0 for x �= 0.

(iv) If {x0, x1, . . . } is a sequence such that ‖xk‖ → ∞, then V (xk) → ∞.

Then the origin x = 0 is globally asymptotically stable. That is, for any initial condition

lim
t→∞x(t) = 0
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Lyapunov stability of linear systems

The function V (x) = x∗Xx is a Lyapunov function for the linear system ẋ(t) = Ax(t),
since

d

dt
V (x) = ẋ∗(t)Y x(t) + x∗(t)Y ẋ(t)

= x∗(t)(A∗X + XA)x(t)

= −x∗(t)Qx(t) < 0

Notes

• Hence, if Xc is the controllability gramian, the function V (x) = x∗Xcx is a Lyapunov
function for ẋ(t) = Ax(t).

• Similarly, if Yo is the controllability gramian, the function V (x) = x∗Yox is a Lyapunov
function for ẋ(t) = A∗x(t).

• Corollary: The LMI condition

A is Hurwitz ⇐⇒ there exists X > 0 such that A∗X + XA < 0

• There are many other interpretations for the gramians; e.g. as Lagrange multipliers,
separating hyperplanes, storage functions, solutions to H-J equations, state covariance
for systems driven by white noise, . . .


